import torch import torch.nn as nn import math import warnings import random import numpy as np from collections import OrderedDict from functools import partial from itertools import repeat from lib.model.drop import DropPath def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class MLP(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., st_mode='vanilla'): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.mode = st_mode if self.mode == 'parallel': self.ts_attn = nn.Linear(dim*2, dim*2) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) else: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj_drop = nn.Dropout(proj_drop) self.attn_count_s = None self.attn_count_t = None def forward(self, x, seqlen=1): B, N, C = x.shape if self.mode == 'series': qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) x = self.forward_spatial(q, k, v) qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) x = self.forward_temporal(q, k, v, seqlen=seqlen) elif self.mode == 'parallel': qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) x_t = self.forward_temporal(q, k, v, seqlen=seqlen) x_s = self.forward_spatial(q, k, v) alpha = torch.cat([x_s, x_t], dim=-1) alpha = alpha.mean(dim=1, keepdim=True) alpha = self.ts_attn(alpha).reshape(B, 1, C, 2) alpha = alpha.softmax(dim=-1) x = x_t * alpha[:,:,:,1] + x_s * alpha[:,:,:,0] elif self.mode == 'coupling': qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) x = self.forward_coupling(q, k, v, seqlen=seqlen) elif self.mode == 'vanilla': qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) x = self.forward_spatial(q, k, v) elif self.mode == 'temporal': qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) x = self.forward_temporal(q, k, v, seqlen=seqlen) elif self.mode == 'spatial': qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) x = self.forward_spatial(q, k, v) else: raise NotImplementedError(self.mode) x = self.proj(x) x = self.proj_drop(x) return x def reshape_T(self, x, seqlen=1, inverse=False): if not inverse: N, C = x.shape[-2:] x = x.reshape(-1, seqlen, self.num_heads, N, C).transpose(1,2) x = x.reshape(-1, self.num_heads, seqlen*N, C) #(B, H, TN, c) else: TN, C = x.shape[-2:] x = x.reshape(-1, self.num_heads, seqlen, TN // seqlen, C).transpose(1,2) x = x.reshape(-1, self.num_heads, TN // seqlen, C) #(BT, H, N, C) return x def forward_coupling(self, q, k, v, seqlen=8): BT, _, N, C = q.shape q = self.reshape_T(q, seqlen) k = self.reshape_T(k, seqlen) v = self.reshape_T(v, seqlen) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = self.reshape_T(x, seqlen, inverse=True) x = x.transpose(1,2).reshape(BT, N, C*self.num_heads) return x def forward_spatial(self, q, k, v): B, _, N, C = q.shape attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1,2).reshape(B, N, C*self.num_heads) return x def forward_temporal(self, q, k, v, seqlen=8): B, _, N, C = q.shape qt = q.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C) kt = k.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C) vt = v.reshape(-1, seqlen, self.num_heads, N, C).permute(0, 2, 3, 1, 4) #(B, H, N, T, C) attn = (qt @ kt.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ vt #(B, H, N, T, C) x = x.permute(0, 3, 2, 1, 4).reshape(B, N, C*self.num_heads) return x def count_attn(self, attn): attn = attn.detach().cpu().numpy() attn = attn.mean(axis=1) attn_t = attn[:, :, 1].mean(axis=1) attn_s = attn[:, :, 0].mean(axis=1) if self.attn_count_s is None: self.attn_count_s = attn_s self.attn_count_t = attn_t else: self.attn_count_s = np.concatenate([self.attn_count_s, attn_s], axis=0) self.attn_count_t = np.concatenate([self.attn_count_t, attn_t], axis=0) class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., mlp_out_ratio=1., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, st_mode='stage_st', att_fuse=False): super().__init__() # assert 'stage' in st_mode self.st_mode = st_mode self.norm1_s = norm_layer(dim) self.norm1_t = norm_layer(dim) self.attn_s = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, st_mode="spatial") self.attn_t = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, st_mode="temporal") # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2_s = norm_layer(dim) self.norm2_t = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) mlp_out_dim = int(dim * mlp_out_ratio) self.mlp_s = MLP(in_features=dim, hidden_features=mlp_hidden_dim, out_features=mlp_out_dim, act_layer=act_layer, drop=drop) self.mlp_t = MLP(in_features=dim, hidden_features=mlp_hidden_dim, out_features=mlp_out_dim, act_layer=act_layer, drop=drop) self.att_fuse = att_fuse if self.att_fuse: self.ts_attn = nn.Linear(dim*2, dim*2) def forward(self, x, seqlen=1): if self.st_mode=='stage_st': x = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen)) x = x + self.drop_path(self.mlp_s(self.norm2_s(x))) x = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen)) x = x + self.drop_path(self.mlp_t(self.norm2_t(x))) elif self.st_mode=='stage_ts': x = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen)) x = x + self.drop_path(self.mlp_t(self.norm2_t(x))) x = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen)) x = x + self.drop_path(self.mlp_s(self.norm2_s(x))) elif self.st_mode=='stage_para': x_t = x + self.drop_path(self.attn_t(self.norm1_t(x), seqlen)) x_t = x_t + self.drop_path(self.mlp_t(self.norm2_t(x_t))) x_s = x + self.drop_path(self.attn_s(self.norm1_s(x), seqlen)) x_s = x_s + self.drop_path(self.mlp_s(self.norm2_s(x_s))) if self.att_fuse: # x_s, x_t: [BF, J, dim] alpha = torch.cat([x_s, x_t], dim=-1) BF, J = alpha.shape[:2] # alpha = alpha.mean(dim=1, keepdim=True) alpha = self.ts_attn(alpha).reshape(BF, J, -1, 2) alpha = alpha.softmax(dim=-1) x = x_t * alpha[:,:,:,1] + x_s * alpha[:,:,:,0] else: x = (x_s + x_t)*0.5 else: raise NotImplementedError(self.st_mode) return x class DSTformer(nn.Module): def __init__(self, dim_in=3, dim_out=3, dim_feat=256, dim_rep=512, depth=5, num_heads=8, mlp_ratio=4, num_joints=17, maxlen=243, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, att_fuse=True): super().__init__() self.dim_out = dim_out self.dim_feat = dim_feat self.joints_embed = nn.Linear(dim_in, dim_feat) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks_st = nn.ModuleList([ Block( dim=dim_feat, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, st_mode="stage_st") for i in range(depth)]) self.blocks_ts = nn.ModuleList([ Block( dim=dim_feat, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, st_mode="stage_ts") for i in range(depth)]) self.norm = norm_layer(dim_feat) if dim_rep: self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(dim_feat, dim_rep)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() self.head = nn.Linear(dim_rep, dim_out) if dim_out > 0 else nn.Identity() self.temp_embed = nn.Parameter(torch.zeros(1, maxlen, 1, dim_feat)) self.pos_embed = nn.Parameter(torch.zeros(1, num_joints, dim_feat)) trunc_normal_(self.temp_embed, std=.02) trunc_normal_(self.pos_embed, std=.02) self.apply(self._init_weights) self.att_fuse = att_fuse if self.att_fuse: self.ts_attn = nn.ModuleList([nn.Linear(dim_feat*2, 2) for i in range(depth)]) for i in range(depth): self.ts_attn[i].weight.data.fill_(0) self.ts_attn[i].bias.data.fill_(0.5) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_classifier(self): return self.head def reset_classifier(self, dim_out, global_pool=''): self.dim_out = dim_out self.head = nn.Linear(self.dim_feat, dim_out) if dim_out > 0 else nn.Identity() def forward(self, x, return_rep=False): B, F, J, C = x.shape x = x.reshape(-1, J, C) BF = x.shape[0] x = self.joints_embed(x) x = x + self.pos_embed _, J, C = x.shape x = x.reshape(-1, F, J, C) + self.temp_embed[:,:F,:,:] x = x.reshape(BF, J, C) x = self.pos_drop(x) alphas = [] for idx, (blk_st, blk_ts) in enumerate(zip(self.blocks_st, self.blocks_ts)): x_st = blk_st(x, F) x_ts = blk_ts(x, F) if self.att_fuse: att = self.ts_attn[idx] alpha = torch.cat([x_st, x_ts], dim=-1) BF, J = alpha.shape[:2] alpha = att(alpha) alpha = alpha.softmax(dim=-1) x = x_st * alpha[:,:,0:1] + x_ts * alpha[:,:,1:2] else: x = (x_st + x_ts)*0.5 x = self.norm(x) x = x.reshape(B, F, J, -1) x = self.pre_logits(x) # [B, F, J, dim_feat] if return_rep: return x x = self.head(x) return x def get_representation(self, x): return self.forward(x, return_rep=True)