File size: 1,962 Bytes
9d36cd2 b557a7b 9d36cd2 60544ff 9d36cd2 60544ff 9d36cd2 b557a7b 9d36cd2 60544ff b557a7b 9d36cd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-135M-Instruct
tags:
- generated_from_trainer
model-index:
- name: SmolLM2-135M-Instruct-relevance-sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SmolLM2-135M-Instruct-relevance-sft
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7045
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2024
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.916 | 0.3854 | 500 | 0.7372 |
| 0.8854 | 0.7707 | 1000 | 0.7177 |
| 0.9783 | 1.1562 | 1500 | 0.7117 |
| 0.9635 | 1.5415 | 2000 | 0.7066 |
| 0.9591 | 1.9269 | 2500 | 0.7046 |
| 0.8954 | 2.3123 | 3000 | 0.7044 |
| 0.8896 | 2.6977 | 3500 | 0.7045 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
|