File size: 1,962 Bytes
9d36cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b557a7b
9d36cd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60544ff
 
9d36cd2
 
 
 
60544ff
 
9d36cd2
 
 
b557a7b
9d36cd2
 
 
60544ff
 
b557a7b
 
 
 
 
 
 
9d36cd2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-135M-Instruct
tags:
- generated_from_trainer
model-index:
- name: SmolLM2-135M-Instruct-relevance-sft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SmolLM2-135M-Instruct-relevance-sft

This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7045

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2024
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.916         | 0.3854 | 500  | 0.7372          |
| 0.8854        | 0.7707 | 1000 | 0.7177          |
| 0.9783        | 1.1562 | 1500 | 0.7117          |
| 0.9635        | 1.5415 | 2000 | 0.7066          |
| 0.9591        | 1.9269 | 2500 | 0.7046          |
| 0.8954        | 2.3123 | 3000 | 0.7044          |
| 0.8896        | 2.6977 | 3500 | 0.7045          |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3