--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-135M-Instruct tags: - generated_from_trainer model-index: - name: SmolLM2-135M-Instruct-relevance-sft results: [] --- # SmolLM2-135M-Instruct-relevance-sft This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2024 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9921 | 0.3853 | 500 | 0.8058 | | 0.9685 | 0.7706 | 1000 | 0.7897 | | 1.0532 | 1.1558 | 1500 | 0.7858 | | 1.0206 | 1.5411 | 2000 | 0.7847 | | 1.0418 | 1.9264 | 2500 | 0.7844 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3