|
|
|
|
|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from packaging import version
|
|
|
|
from transformers import (
|
|
CLIPImageProcessor,
|
|
CLIPTextModel,
|
|
CLIPTextModelWithProjection,
|
|
CLIPTokenizer,
|
|
CLIPVisionModelWithProjection,
|
|
)
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
from diffusers.loaders import (
|
|
FromSingleFileMixin,
|
|
IPAdapterMixin,
|
|
StableDiffusionXLLoraLoaderMixin,
|
|
TextualInversionLoaderMixin,
|
|
)
|
|
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
|
from diffusers.models.attention_processor import (
|
|
AttnProcessor2_0,
|
|
FusedAttnProcessor2_0,
|
|
LoRAAttnProcessor2_0,
|
|
LoRAXFormersAttnProcessor,
|
|
XFormersAttnProcessor,
|
|
)
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
deprecate,
|
|
is_invisible_watermark_available,
|
|
is_torch_xla_available,
|
|
logging,
|
|
replace_example_docstring,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
|
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> from diffusers import StableDiffusionXLPipeline
|
|
|
|
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
|
... )
|
|
>>> pipe = pipe.to("cuda")
|
|
|
|
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
|
>>> image = pipe(prompt).images[0]
|
|
```
|
|
"""
|
|
|
|
|
|
class PAGIdentitySelfAttnProcessor:
|
|
r"""
|
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
|
"""
|
|
|
|
def __init__(self):
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> torch.FloatTensor:
|
|
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
|
deprecate("scale", "1.0.0", deprecation_message)
|
|
|
|
residual = hidden_states
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
|
|
hidden_states_org, hidden_states_ptb = hidden_states.chunk(2)
|
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_org.shape
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states_org)
|
|
key = attn.to_k(hidden_states_org)
|
|
value = attn.to_v(hidden_states_org)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
hidden_states_org = F.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states_org = hidden_states_org.to(query.dtype)
|
|
|
|
|
|
hidden_states_org = attn.to_out[0](hidden_states_org)
|
|
|
|
hidden_states_org = attn.to_out[1](hidden_states_org)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_ptb.shape
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)
|
|
|
|
value = attn.to_v(hidden_states_ptb)
|
|
|
|
|
|
hidden_states_ptb = value
|
|
|
|
hidden_states_ptb = hidden_states_ptb.to(query.dtype)
|
|
|
|
|
|
hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
|
|
|
|
hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|
|
|
|
|
|
class PAGCFGIdentitySelfAttnProcessor:
|
|
r"""
|
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
|
"""
|
|
|
|
def __init__(self):
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> torch.FloatTensor:
|
|
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
|
deprecate("scale", "1.0.0", deprecation_message)
|
|
|
|
residual = hidden_states
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
|
|
hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3)
|
|
hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org])
|
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_org.shape
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states_org)
|
|
key = attn.to_k(hidden_states_org)
|
|
value = attn.to_v(hidden_states_org)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
hidden_states_org = F.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states_org = hidden_states_org.to(query.dtype)
|
|
|
|
|
|
hidden_states_org = attn.to_out[0](hidden_states_org)
|
|
|
|
hidden_states_org = attn.to_out[1](hidden_states_org)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_ptb.shape
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2)
|
|
|
|
value = attn.to_v(hidden_states_ptb)
|
|
hidden_states_ptb = value
|
|
hidden_states_ptb = hidden_states_ptb.to(query.dtype)
|
|
|
|
|
|
hidden_states_ptb = attn.to_out[0](hidden_states_ptb)
|
|
|
|
hidden_states_ptb = attn.to_out[1](hidden_states_ptb)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
|
|
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|
|
|
|
if is_invisible_watermark_available():
|
|
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
"""
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
|
"""
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
|
return noise_cfg
|
|
|
|
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
|
must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
class StableDiffusionXLPipeline(
|
|
DiffusionPipeline,
|
|
StableDiffusionMixin,
|
|
FromSingleFileMixin,
|
|
StableDiffusionXLLoraLoaderMixin,
|
|
TextualInversionLoaderMixin,
|
|
IPAdapterMixin,
|
|
):
|
|
r"""
|
|
Pipeline for text-to-image generation using Stable Diffusion XL.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
The pipeline also inherits the following loading methods:
|
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
|
specifically the
|
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
|
variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
tokenizer_2 (`CLIPTokenizer`):
|
|
Second Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
|
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
|
`stabilityai/stable-diffusion-xl-base-1-0`.
|
|
add_watermarker (`bool`, *optional*):
|
|
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
|
watermarker will be used.
|
|
"""
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
|
_optional_components = [
|
|
"tokenizer",
|
|
"tokenizer_2",
|
|
"text_encoder",
|
|
"text_encoder_2",
|
|
"image_encoder",
|
|
"feature_extractor",
|
|
]
|
|
_callback_tensor_inputs = [
|
|
"latents",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
"add_text_embeds",
|
|
"add_time_ids",
|
|
"negative_pooled_prompt_embeds",
|
|
"negative_add_time_ids",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
text_encoder_2: CLIPTextModelWithProjection,
|
|
tokenizer: CLIPTokenizer,
|
|
tokenizer_2: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
image_encoder: CLIPVisionModelWithProjection = None,
|
|
feature_extractor: CLIPImageProcessor = None,
|
|
force_zeros_for_empty_prompt: bool = True,
|
|
add_watermarker: Optional[bool] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
text_encoder_2=text_encoder_2,
|
|
tokenizer=tokenizer,
|
|
tokenizer_2=tokenizer_2,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
image_encoder=image_encoder,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
|
self.default_sample_size = self.unet.config.sample_size
|
|
|
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
|
|
|
if add_watermarker:
|
|
self.watermark = StableDiffusionXLWatermarker()
|
|
else:
|
|
self.watermark = None
|
|
|
|
def encode_prompt(
|
|
self,
|
|
prompt: str,
|
|
prompt_2: Optional[str] = None,
|
|
device: Optional[torch.device] = None,
|
|
num_images_per_prompt: int = 1,
|
|
do_classifier_free_guidance: bool = True,
|
|
negative_prompt: Optional[str] = None,
|
|
negative_prompt_2: Optional[str] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
lora_scale (`float`, *optional*):
|
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
"""
|
|
device = device or self._execution_device
|
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
|
|
if self.text_encoder is not None:
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
if prompt is not None:
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
|
text_encoders = (
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
|
)
|
|
|
|
if prompt_embeds is None:
|
|
prompt_2 = prompt_2 or prompt
|
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
|
|
prompt_embeds_list = []
|
|
prompts = [prompt, prompt_2]
|
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
|
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0]
|
|
if clip_skip is None:
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
else:
|
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
|
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
|
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
negative_prompt = negative_prompt or ""
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
|
negative_prompt_2 = (
|
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
|
)
|
|
|
|
uncond_tokens: List[str]
|
|
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = [negative_prompt, negative_prompt_2]
|
|
|
|
negative_prompt_embeds_list = []
|
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = tokenizer(
|
|
negative_prompt,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
negative_prompt_embeds = text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
output_hidden_states=True,
|
|
)
|
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
else:
|
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
if self.text_encoder_2 is not None:
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
else:
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
if do_classifier_free_guidance:
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
|
|
if self.text_encoder is not None:
|
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
|
dtype = next(self.image_encoder.parameters()).dtype
|
|
|
|
if not isinstance(image, torch.Tensor):
|
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
if output_hidden_states:
|
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_enc_hidden_states = self.image_encoder(
|
|
torch.zeros_like(image), output_hidden_states=True
|
|
).hidden_states[-2]
|
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
|
num_images_per_prompt, dim=0
|
|
)
|
|
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
|
else:
|
|
image_embeds = self.image_encoder(image).image_embeds
|
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_embeds = torch.zeros_like(image_embeds)
|
|
|
|
return image_embeds, uncond_image_embeds
|
|
|
|
|
|
def prepare_ip_adapter_image_embeds(
|
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
|
):
|
|
if ip_adapter_image_embeds is None:
|
|
if not isinstance(ip_adapter_image, list):
|
|
ip_adapter_image = [ip_adapter_image]
|
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
|
raise ValueError(
|
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
|
)
|
|
|
|
image_embeds = []
|
|
for single_ip_adapter_image, image_proj_layer in zip(
|
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
|
):
|
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
|
single_ip_adapter_image, device, 1, output_hidden_state
|
|
)
|
|
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
|
single_negative_image_embeds = torch.stack(
|
|
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
|
)
|
|
|
|
if do_classifier_free_guidance:
|
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
|
single_image_embeds = single_image_embeds.to(device)
|
|
|
|
image_embeds.append(single_image_embeds)
|
|
else:
|
|
repeat_dims = [1]
|
|
image_embeds = []
|
|
for single_image_embeds in ip_adapter_image_embeds:
|
|
if do_classifier_free_guidance:
|
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
|
single_image_embeds = single_image_embeds.repeat(
|
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
|
)
|
|
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
|
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
|
)
|
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
|
else:
|
|
single_image_embeds = single_image_embeds.repeat(
|
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
|
)
|
|
image_embeds.append(single_image_embeds)
|
|
|
|
return image_embeds
|
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
negative_prompt_2=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
pooled_prompt_embeds=None,
|
|
negative_pooled_prompt_embeds=None,
|
|
ip_adapter_image=None,
|
|
ip_adapter_image_embeds=None,
|
|
callback_on_step_end_tensor_inputs=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt_2 is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
|
raise ValueError(
|
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
|
)
|
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
|
raise ValueError(
|
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
|
)
|
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
|
raise ValueError(
|
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
|
)
|
|
|
|
if ip_adapter_image_embeds is not None:
|
|
if not isinstance(ip_adapter_image_embeds, list):
|
|
raise ValueError(
|
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
|
)
|
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
|
raise ValueError(
|
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
|
)
|
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def _get_add_time_ids(
|
|
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
|
):
|
|
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
|
|
|
passed_add_embed_dim = (
|
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
|
)
|
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
|
|
|
if expected_add_embed_dim != passed_add_embed_dim:
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
|
)
|
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
|
return add_time_ids
|
|
|
|
def upcast_vae(self):
|
|
dtype = self.vae.dtype
|
|
self.vae.to(dtype=torch.float32)
|
|
use_torch_2_0_or_xformers = isinstance(
|
|
self.vae.decoder.mid_block.attentions[0].processor,
|
|
(
|
|
AttnProcessor2_0,
|
|
XFormersAttnProcessor,
|
|
LoRAXFormersAttnProcessor,
|
|
LoRAAttnProcessor2_0,
|
|
FusedAttnProcessor2_0,
|
|
),
|
|
)
|
|
|
|
|
|
if use_torch_2_0_or_xformers:
|
|
self.vae.post_quant_conv.to(dtype)
|
|
self.vae.decoder.conv_in.to(dtype)
|
|
self.vae.decoder.mid_block.to(dtype)
|
|
|
|
|
|
def get_guidance_scale_embedding(
|
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
|
) -> torch.FloatTensor:
|
|
"""
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
|
|
Args:
|
|
w (`torch.Tensor`):
|
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
|
embedding_dim (`int`, *optional*, defaults to 512):
|
|
Dimension of the embeddings to generate.
|
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
|
Data type of the generated embeddings.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1:
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
def pred_z0(self, sample, model_output, timestep):
|
|
alpha_prod_t = self.scheduler.alphas_cumprod[timestep].to(sample.device)
|
|
|
|
beta_prod_t = 1 - alpha_prod_t
|
|
if self.scheduler.config.prediction_type == "epsilon":
|
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
|
elif self.scheduler.config.prediction_type == "sample":
|
|
pred_original_sample = model_output
|
|
elif self.scheduler.config.prediction_type == "v_prediction":
|
|
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
|
|
|
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
|
else:
|
|
raise ValueError(
|
|
f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`,"
|
|
" or `v_prediction`"
|
|
)
|
|
|
|
return pred_original_sample
|
|
|
|
def pred_x0(self, latents, noise_pred, t, generator, device, prompt_embeds, output_type):
|
|
pred_z0 = self.pred_z0(latents, noise_pred, t)
|
|
pred_x0 = self.vae.decode(
|
|
pred_z0 / self.vae.config.scaling_factor,
|
|
return_dict=False,
|
|
generator=generator
|
|
)[0]
|
|
|
|
do_denormalize = [True] * pred_x0.shape[0]
|
|
pred_x0 = self.image_processor.postprocess(pred_x0, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
return pred_x0
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def guidance_rescale(self):
|
|
return self._guidance_rescale
|
|
|
|
@property
|
|
def clip_skip(self):
|
|
return self._clip_skip
|
|
|
|
|
|
|
|
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
|
|
|
@property
|
|
def cross_attention_kwargs(self):
|
|
return self._cross_attention_kwargs
|
|
|
|
@property
|
|
def denoising_end(self):
|
|
return self._denoising_end
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
@property
|
|
def pag_scale(self):
|
|
return self._pag_scale
|
|
|
|
@property
|
|
def do_adversarial_guidance(self):
|
|
return self._pag_scale > 0
|
|
|
|
@property
|
|
def pag_adaptive_scaling(self):
|
|
return self._pag_adaptive_scaling
|
|
|
|
@property
|
|
def do_pag_adaptive_scaling(self):
|
|
return self._pag_adaptive_scaling > 0
|
|
|
|
@property
|
|
def pag_drop_rate(self):
|
|
return self._pag_drop_rate
|
|
|
|
@property
|
|
def pag_applied_layers(self):
|
|
return self._pag_applied_layers
|
|
|
|
@property
|
|
def pag_applied_layers_index(self):
|
|
return self._pag_applied_layers_index
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
timesteps: List[int] = None,
|
|
denoising_end: Optional[float] = None,
|
|
guidance_scale: float = 5.0,
|
|
pag_scale: float = 0.0,
|
|
pag_adaptive_scaling: float = 0.0,
|
|
pag_drop_rate: float = 0.5,
|
|
pag_applied_layers: List[str] = ['mid'],
|
|
pag_applied_layers_index: List[str] = None,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
original_size: Optional[Tuple[int, int]] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Optional[Tuple[int, int]] = None,
|
|
negative_original_size: Optional[Tuple[int, int]] = None,
|
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
negative_target_size: Optional[Tuple[int, int]] = None,
|
|
clip_skip: Optional[int] = None,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
Anything below 512 pixels won't work well for
|
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
and checkpoints that are not specifically fine-tuned on low resolutions.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
Anything below 512 pixels won't work well for
|
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
and checkpoints that are not specifically fine-tuned on low resolutions.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|
passed will be used. Must be in descending order.
|
|
denoising_end (`float`, *optional*):
|
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
|
guidance_scale (`float`, *optional*, defaults to 5.0):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
|
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
|
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
|
of a plain tuple.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
|
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
|
explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
|
micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
|
micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
To negatively condition the generation process based on a target image resolution. It should be as same
|
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
|
callback_on_step_end (`Callable`, *optional*):
|
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|
`callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
|
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
|
"""
|
|
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
|
if callback is not None:
|
|
deprecate(
|
|
"callback",
|
|
"1.0.0",
|
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
|
)
|
|
if callback_steps is not None:
|
|
deprecate(
|
|
"callback_steps",
|
|
"1.0.0",
|
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
|
)
|
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
original_size = original_size or (height, width)
|
|
target_size = target_size or (height, width)
|
|
|
|
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt,
|
|
negative_prompt_2,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
callback_on_step_end_tensor_inputs,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._guidance_rescale = guidance_rescale
|
|
self._clip_skip = clip_skip
|
|
self._cross_attention_kwargs = cross_attention_kwargs
|
|
self._denoising_end = denoising_end
|
|
self._interrupt = False
|
|
|
|
self._pag_scale = pag_scale
|
|
self._pag_adaptive_scaling = pag_adaptive_scaling
|
|
self._pag_drop_rate = pag_drop_rate
|
|
self._pag_applied_layers = pag_applied_layers
|
|
self._pag_applied_layers_index = pag_applied_layers_index
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
|
|
lora_scale = (
|
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
|
)
|
|
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_2=negative_prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
lora_scale=lora_scale,
|
|
clip_skip=self.clip_skip,
|
|
)
|
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds
|
|
if self.text_encoder_2 is None:
|
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
|
else:
|
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
|
|
|
add_time_ids = self._get_add_time_ids(
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
if negative_original_size is not None and negative_target_size is not None:
|
|
negative_add_time_ids = self._get_add_time_ids(
|
|
negative_original_size,
|
|
negative_crops_coords_top_left,
|
|
negative_target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
else:
|
|
negative_add_time_ids = add_time_ids
|
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
|
|
|
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
|
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([add_text_embeds, add_text_embeds], dim=0)
|
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
|
|
|
elif self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds, add_text_embeds], dim=0)
|
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
device,
|
|
batch_size * num_images_per_prompt,
|
|
self.do_classifier_free_guidance,
|
|
)
|
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
|
|
if (
|
|
self.denoising_end is not None
|
|
and isinstance(self.denoising_end, float)
|
|
and self.denoising_end > 0
|
|
and self.denoising_end < 1
|
|
):
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
|
timesteps = timesteps[:num_inference_steps]
|
|
|
|
|
|
timestep_cond = None
|
|
if self.unet.config.time_cond_proj_dim is not None:
|
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
|
timestep_cond = self.get_guidance_scale_embedding(
|
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
|
).to(device=device, dtype=latents.dtype)
|
|
|
|
|
|
if self.do_adversarial_guidance:
|
|
down_layers = []
|
|
mid_layers = []
|
|
up_layers = []
|
|
for name, module in self.unet.named_modules():
|
|
if 'attn1' in name and 'to' not in name:
|
|
layer_type = name.split('.')[0].split('_')[0]
|
|
if layer_type == 'down':
|
|
down_layers.append(module)
|
|
elif layer_type == 'mid':
|
|
mid_layers.append(module)
|
|
elif layer_type == 'up':
|
|
up_layers.append(module)
|
|
else:
|
|
raise ValueError(f"Invalid layer type: {layer_type}")
|
|
|
|
self._num_timesteps = len(timesteps)
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
|
latent_model_input = torch.cat([latents] * 2)
|
|
|
|
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
|
latent_model_input = torch.cat([latents] * 2)
|
|
|
|
elif self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
|
latent_model_input = torch.cat([latents] * 3)
|
|
|
|
else:
|
|
latent_model_input = latents
|
|
|
|
|
|
if self.do_adversarial_guidance:
|
|
|
|
if self.do_classifier_free_guidance:
|
|
replace_processor = PAGCFGIdentitySelfAttnProcessor()
|
|
else:
|
|
replace_processor = PAGIdentitySelfAttnProcessor()
|
|
|
|
if(self.pag_applied_layers_index):
|
|
drop_layers = self.pag_applied_layers_index
|
|
for drop_layer in drop_layers:
|
|
layer_number = int(drop_layer[1:])
|
|
try:
|
|
if drop_layer[0] == 'd':
|
|
down_layers[layer_number].processor = replace_processor
|
|
elif drop_layer[0] == 'm':
|
|
mid_layers[layer_number].processor = replace_processor
|
|
elif drop_layer[0] == 'u':
|
|
up_layers[layer_number].processor = replace_processor
|
|
else:
|
|
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
|
except IndexError:
|
|
raise ValueError(
|
|
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
|
)
|
|
elif(self.pag_applied_layers):
|
|
drop_full_layers = self.pag_applied_layers
|
|
for drop_full_layer in drop_full_layers:
|
|
try:
|
|
if drop_full_layer == "down":
|
|
for down_layer in down_layers:
|
|
down_layer.processor = replace_processor
|
|
elif drop_full_layer == "mid":
|
|
for mid_layer in mid_layers:
|
|
mid_layer.processor = replace_processor
|
|
elif drop_full_layer == "up":
|
|
for up_layer in up_layers:
|
|
up_layer.processor = replace_processor
|
|
else:
|
|
raise ValueError(f"Invalid layer type: {drop_full_layer}")
|
|
except IndexError:
|
|
raise ValueError(
|
|
f"Invalid layer index: {drop_full_layer}. Available layers are: down, mid and up. If you need to specify each layer index, you can use `pag_applied_layers_index`"
|
|
)
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
|
added_cond_kwargs["image_embeds"] = image_embeds
|
|
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep_cond=timestep_cond,
|
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
|
noise_pred_original, noise_pred_perturb = noise_pred.chunk(2)
|
|
|
|
signal_scale = self.pag_scale
|
|
if self.do_pag_adaptive_scaling:
|
|
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000-t)
|
|
if signal_scale<0:
|
|
signal_scale = 0
|
|
|
|
noise_pred = noise_pred_original + signal_scale * (noise_pred_original - noise_pred_perturb)
|
|
|
|
|
|
elif self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
|
|
|
noise_pred_uncond, noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(3)
|
|
|
|
signal_scale = self.pag_scale
|
|
if self.do_pag_adaptive_scaling:
|
|
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000-t)
|
|
if signal_scale<0:
|
|
signal_scale = 0
|
|
|
|
noise_pred = noise_pred_text + (self.guidance_scale-1.0) * (noise_pred_text - noise_pred_uncond) + signal_scale * (noise_pred_text - noise_pred_text_perturb)
|
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
|
|
|
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
|
|
latents = latents.to(latents_dtype)
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
|
negative_pooled_prompt_embeds = callback_outputs.pop(
|
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
|
)
|
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
|
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if not output_type == "latent":
|
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
|
|
|
if needs_upcasting:
|
|
self.upcast_vae()
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
elif latents.dtype != self.vae.dtype:
|
|
if torch.backends.mps.is_available():
|
|
|
|
self.vae = self.vae.to(latents.dtype)
|
|
|
|
|
|
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
|
if has_latents_mean and has_latents_std:
|
|
latents_mean = (
|
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents_std = (
|
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
|
else:
|
|
latents = latents / self.vae.config.scaling_factor
|
|
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
|
|
|
|
if needs_upcasting:
|
|
self.vae.to(dtype=torch.float16)
|
|
else:
|
|
image = latents
|
|
|
|
if not output_type == "latent":
|
|
|
|
if self.watermark is not None:
|
|
image = self.watermark.apply_watermark(image)
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
|
|
if self.do_adversarial_guidance:
|
|
if(self.pag_applied_layers_index):
|
|
drop_layers = self.pag_applied_layers_index
|
|
for drop_layer in drop_layers:
|
|
layer_number = int(drop_layer[1:])
|
|
try:
|
|
if drop_layer[0] == 'd':
|
|
down_layers[layer_number].processor = AttnProcessor2_0()
|
|
elif drop_layer[0] == 'm':
|
|
mid_layers[layer_number].processor = AttnProcessor2_0()
|
|
elif drop_layer[0] == 'u':
|
|
up_layers[layer_number].processor = AttnProcessor2_0()
|
|
else:
|
|
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
|
except IndexError:
|
|
raise ValueError(
|
|
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
|
)
|
|
elif(self.pag_applied_layers):
|
|
drop_full_layers = self.pag_applied_layers
|
|
for drop_full_layer in drop_full_layers:
|
|
try:
|
|
if drop_full_layer == "down":
|
|
for down_layer in down_layers:
|
|
down_layer.processor = AttnProcessor2_0()
|
|
elif drop_full_layer == "mid":
|
|
for mid_layer in mid_layers:
|
|
mid_layer.processor = AttnProcessor2_0()
|
|
elif drop_full_layer == "up":
|
|
for up_layer in up_layers:
|
|
up_layer.processor = AttnProcessor2_0()
|
|
else:
|
|
raise ValueError(f"Invalid layer type: {drop_full_layer}")
|
|
except IndexError:
|
|
raise ValueError(
|
|
f"Invalid layer index: {drop_full_layer}. Available layers are: down, mid and up. If you need to specify each layer index, you can use `pag_applied_layers_index`"
|
|
)
|
|
return StableDiffusionXLPipelineOutput(images=image) |