wangjinzzhong commited on
Commit
acd791e
1 Parent(s): 60ba0ea

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2545 -0
README.md ADDED
@@ -0,0 +1,2545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ - transformers
7
+ - mteb
8
+ - llama-cpp
9
+ - gguf-my-repo
10
+ license: mit
11
+ language:
12
+ - en
13
+ base_model: BAAI/bge-small-en-v1.5
14
+ model-index:
15
+ - name: bge-small-en-v1.5
16
+ results:
17
+ - task:
18
+ type: Classification
19
+ dataset:
20
+ name: MTEB AmazonCounterfactualClassification (en)
21
+ type: mteb/amazon_counterfactual
22
+ config: en
23
+ split: test
24
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
25
+ metrics:
26
+ - type: accuracy
27
+ value: 73.79104477611939
28
+ - type: ap
29
+ value: 37.21923821573361
30
+ - type: f1
31
+ value: 68.0914945617093
32
+ - task:
33
+ type: Classification
34
+ dataset:
35
+ name: MTEB AmazonPolarityClassification
36
+ type: mteb/amazon_polarity
37
+ config: default
38
+ split: test
39
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
40
+ metrics:
41
+ - type: accuracy
42
+ value: 92.75377499999999
43
+ - type: ap
44
+ value: 89.46766124546022
45
+ - type: f1
46
+ value: 92.73884001331487
47
+ - task:
48
+ type: Classification
49
+ dataset:
50
+ name: MTEB AmazonReviewsClassification (en)
51
+ type: mteb/amazon_reviews_multi
52
+ config: en
53
+ split: test
54
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
55
+ metrics:
56
+ - type: accuracy
57
+ value: 46.986
58
+ - type: f1
59
+ value: 46.55936786727896
60
+ - task:
61
+ type: Retrieval
62
+ dataset:
63
+ name: MTEB ArguAna
64
+ type: arguana
65
+ config: default
66
+ split: test
67
+ revision: None
68
+ metrics:
69
+ - type: map_at_1
70
+ value: 35.846000000000004
71
+ - type: map_at_10
72
+ value: 51.388
73
+ - type: map_at_100
74
+ value: 52.132999999999996
75
+ - type: map_at_1000
76
+ value: 52.141000000000005
77
+ - type: map_at_3
78
+ value: 47.037
79
+ - type: map_at_5
80
+ value: 49.579
81
+ - type: mrr_at_1
82
+ value: 36.558
83
+ - type: mrr_at_10
84
+ value: 51.658
85
+ - type: mrr_at_100
86
+ value: 52.402
87
+ - type: mrr_at_1000
88
+ value: 52.410000000000004
89
+ - type: mrr_at_3
90
+ value: 47.345
91
+ - type: mrr_at_5
92
+ value: 49.797999999999995
93
+ - type: ndcg_at_1
94
+ value: 35.846000000000004
95
+ - type: ndcg_at_10
96
+ value: 59.550000000000004
97
+ - type: ndcg_at_100
98
+ value: 62.596
99
+ - type: ndcg_at_1000
100
+ value: 62.759
101
+ - type: ndcg_at_3
102
+ value: 50.666999999999994
103
+ - type: ndcg_at_5
104
+ value: 55.228
105
+ - type: precision_at_1
106
+ value: 35.846000000000004
107
+ - type: precision_at_10
108
+ value: 8.542
109
+ - type: precision_at_100
110
+ value: 0.984
111
+ - type: precision_at_1000
112
+ value: 0.1
113
+ - type: precision_at_3
114
+ value: 20.389
115
+ - type: precision_at_5
116
+ value: 14.438
117
+ - type: recall_at_1
118
+ value: 35.846000000000004
119
+ - type: recall_at_10
120
+ value: 85.42
121
+ - type: recall_at_100
122
+ value: 98.43499999999999
123
+ - type: recall_at_1000
124
+ value: 99.644
125
+ - type: recall_at_3
126
+ value: 61.166
127
+ - type: recall_at_5
128
+ value: 72.191
129
+ - task:
130
+ type: Clustering
131
+ dataset:
132
+ name: MTEB ArxivClusteringP2P
133
+ type: mteb/arxiv-clustering-p2p
134
+ config: default
135
+ split: test
136
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
137
+ metrics:
138
+ - type: v_measure
139
+ value: 47.402770198163594
140
+ - task:
141
+ type: Clustering
142
+ dataset:
143
+ name: MTEB ArxivClusteringS2S
144
+ type: mteb/arxiv-clustering-s2s
145
+ config: default
146
+ split: test
147
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
148
+ metrics:
149
+ - type: v_measure
150
+ value: 40.01545436974177
151
+ - task:
152
+ type: Reranking
153
+ dataset:
154
+ name: MTEB AskUbuntuDupQuestions
155
+ type: mteb/askubuntudupquestions-reranking
156
+ config: default
157
+ split: test
158
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
159
+ metrics:
160
+ - type: map
161
+ value: 62.586465273207196
162
+ - type: mrr
163
+ value: 74.42169019038825
164
+ - task:
165
+ type: STS
166
+ dataset:
167
+ name: MTEB BIOSSES
168
+ type: mteb/biosses-sts
169
+ config: default
170
+ split: test
171
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
172
+ metrics:
173
+ - type: cos_sim_pearson
174
+ value: 85.1891186537969
175
+ - type: cos_sim_spearman
176
+ value: 83.75492046087288
177
+ - type: euclidean_pearson
178
+ value: 84.11766204805357
179
+ - type: euclidean_spearman
180
+ value: 84.01456493126516
181
+ - type: manhattan_pearson
182
+ value: 84.2132950502772
183
+ - type: manhattan_spearman
184
+ value: 83.89227298813377
185
+ - task:
186
+ type: Classification
187
+ dataset:
188
+ name: MTEB Banking77Classification
189
+ type: mteb/banking77
190
+ config: default
191
+ split: test
192
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
193
+ metrics:
194
+ - type: accuracy
195
+ value: 85.74025974025975
196
+ - type: f1
197
+ value: 85.71493566466381
198
+ - task:
199
+ type: Clustering
200
+ dataset:
201
+ name: MTEB BiorxivClusteringP2P
202
+ type: mteb/biorxiv-clustering-p2p
203
+ config: default
204
+ split: test
205
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
206
+ metrics:
207
+ - type: v_measure
208
+ value: 38.467181385006434
209
+ - task:
210
+ type: Clustering
211
+ dataset:
212
+ name: MTEB BiorxivClusteringS2S
213
+ type: mteb/biorxiv-clustering-s2s
214
+ config: default
215
+ split: test
216
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
217
+ metrics:
218
+ - type: v_measure
219
+ value: 34.719496037339056
220
+ - task:
221
+ type: Retrieval
222
+ dataset:
223
+ name: MTEB CQADupstackAndroidRetrieval
224
+ type: BeIR/cqadupstack
225
+ config: default
226
+ split: test
227
+ revision: None
228
+ metrics:
229
+ - type: map_at_1
230
+ value: 29.587000000000003
231
+ - type: map_at_10
232
+ value: 41.114
233
+ - type: map_at_100
234
+ value: 42.532
235
+ - type: map_at_1000
236
+ value: 42.661
237
+ - type: map_at_3
238
+ value: 37.483
239
+ - type: map_at_5
240
+ value: 39.652
241
+ - type: mrr_at_1
242
+ value: 36.338
243
+ - type: mrr_at_10
244
+ value: 46.763
245
+ - type: mrr_at_100
246
+ value: 47.393
247
+ - type: mrr_at_1000
248
+ value: 47.445
249
+ - type: mrr_at_3
250
+ value: 43.538
251
+ - type: mrr_at_5
252
+ value: 45.556000000000004
253
+ - type: ndcg_at_1
254
+ value: 36.338
255
+ - type: ndcg_at_10
256
+ value: 47.658
257
+ - type: ndcg_at_100
258
+ value: 52.824000000000005
259
+ - type: ndcg_at_1000
260
+ value: 54.913999999999994
261
+ - type: ndcg_at_3
262
+ value: 41.989
263
+ - type: ndcg_at_5
264
+ value: 44.944
265
+ - type: precision_at_1
266
+ value: 36.338
267
+ - type: precision_at_10
268
+ value: 9.156
269
+ - type: precision_at_100
270
+ value: 1.4789999999999999
271
+ - type: precision_at_1000
272
+ value: 0.196
273
+ - type: precision_at_3
274
+ value: 20.076
275
+ - type: precision_at_5
276
+ value: 14.85
277
+ - type: recall_at_1
278
+ value: 29.587000000000003
279
+ - type: recall_at_10
280
+ value: 60.746
281
+ - type: recall_at_100
282
+ value: 82.157
283
+ - type: recall_at_1000
284
+ value: 95.645
285
+ - type: recall_at_3
286
+ value: 44.821
287
+ - type: recall_at_5
288
+ value: 52.819
289
+ - type: map_at_1
290
+ value: 30.239
291
+ - type: map_at_10
292
+ value: 39.989000000000004
293
+ - type: map_at_100
294
+ value: 41.196
295
+ - type: map_at_1000
296
+ value: 41.325
297
+ - type: map_at_3
298
+ value: 37.261
299
+ - type: map_at_5
300
+ value: 38.833
301
+ - type: mrr_at_1
302
+ value: 37.516
303
+ - type: mrr_at_10
304
+ value: 46.177
305
+ - type: mrr_at_100
306
+ value: 46.806
307
+ - type: mrr_at_1000
308
+ value: 46.849000000000004
309
+ - type: mrr_at_3
310
+ value: 44.002
311
+ - type: mrr_at_5
312
+ value: 45.34
313
+ - type: ndcg_at_1
314
+ value: 37.516
315
+ - type: ndcg_at_10
316
+ value: 45.586
317
+ - type: ndcg_at_100
318
+ value: 49.897000000000006
319
+ - type: ndcg_at_1000
320
+ value: 51.955
321
+ - type: ndcg_at_3
322
+ value: 41.684
323
+ - type: ndcg_at_5
324
+ value: 43.617
325
+ - type: precision_at_1
326
+ value: 37.516
327
+ - type: precision_at_10
328
+ value: 8.522
329
+ - type: precision_at_100
330
+ value: 1.374
331
+ - type: precision_at_1000
332
+ value: 0.184
333
+ - type: precision_at_3
334
+ value: 20.105999999999998
335
+ - type: precision_at_5
336
+ value: 14.152999999999999
337
+ - type: recall_at_1
338
+ value: 30.239
339
+ - type: recall_at_10
340
+ value: 55.03
341
+ - type: recall_at_100
342
+ value: 73.375
343
+ - type: recall_at_1000
344
+ value: 86.29599999999999
345
+ - type: recall_at_3
346
+ value: 43.269000000000005
347
+ - type: recall_at_5
348
+ value: 48.878
349
+ - type: map_at_1
350
+ value: 38.338
351
+ - type: map_at_10
352
+ value: 50.468999999999994
353
+ - type: map_at_100
354
+ value: 51.553000000000004
355
+ - type: map_at_1000
356
+ value: 51.608
357
+ - type: map_at_3
358
+ value: 47.107
359
+ - type: map_at_5
360
+ value: 49.101
361
+ - type: mrr_at_1
362
+ value: 44.201
363
+ - type: mrr_at_10
364
+ value: 54.057
365
+ - type: mrr_at_100
366
+ value: 54.764
367
+ - type: mrr_at_1000
368
+ value: 54.791000000000004
369
+ - type: mrr_at_3
370
+ value: 51.56699999999999
371
+ - type: mrr_at_5
372
+ value: 53.05
373
+ - type: ndcg_at_1
374
+ value: 44.201
375
+ - type: ndcg_at_10
376
+ value: 56.379000000000005
377
+ - type: ndcg_at_100
378
+ value: 60.645
379
+ - type: ndcg_at_1000
380
+ value: 61.73499999999999
381
+ - type: ndcg_at_3
382
+ value: 50.726000000000006
383
+ - type: ndcg_at_5
384
+ value: 53.58500000000001
385
+ - type: precision_at_1
386
+ value: 44.201
387
+ - type: precision_at_10
388
+ value: 9.141
389
+ - type: precision_at_100
390
+ value: 1.216
391
+ - type: precision_at_1000
392
+ value: 0.135
393
+ - type: precision_at_3
394
+ value: 22.654
395
+ - type: precision_at_5
396
+ value: 15.723999999999998
397
+ - type: recall_at_1
398
+ value: 38.338
399
+ - type: recall_at_10
400
+ value: 70.30499999999999
401
+ - type: recall_at_100
402
+ value: 88.77199999999999
403
+ - type: recall_at_1000
404
+ value: 96.49799999999999
405
+ - type: recall_at_3
406
+ value: 55.218
407
+ - type: recall_at_5
408
+ value: 62.104000000000006
409
+ - type: map_at_1
410
+ value: 25.682
411
+ - type: map_at_10
412
+ value: 33.498
413
+ - type: map_at_100
414
+ value: 34.461000000000006
415
+ - type: map_at_1000
416
+ value: 34.544000000000004
417
+ - type: map_at_3
418
+ value: 30.503999999999998
419
+ - type: map_at_5
420
+ value: 32.216
421
+ - type: mrr_at_1
422
+ value: 27.683999999999997
423
+ - type: mrr_at_10
424
+ value: 35.467999999999996
425
+ - type: mrr_at_100
426
+ value: 36.32
427
+ - type: mrr_at_1000
428
+ value: 36.386
429
+ - type: mrr_at_3
430
+ value: 32.618
431
+ - type: mrr_at_5
432
+ value: 34.262
433
+ - type: ndcg_at_1
434
+ value: 27.683999999999997
435
+ - type: ndcg_at_10
436
+ value: 38.378
437
+ - type: ndcg_at_100
438
+ value: 43.288
439
+ - type: ndcg_at_1000
440
+ value: 45.413
441
+ - type: ndcg_at_3
442
+ value: 32.586
443
+ - type: ndcg_at_5
444
+ value: 35.499
445
+ - type: precision_at_1
446
+ value: 27.683999999999997
447
+ - type: precision_at_10
448
+ value: 5.864
449
+ - type: precision_at_100
450
+ value: 0.882
451
+ - type: precision_at_1000
452
+ value: 0.11
453
+ - type: precision_at_3
454
+ value: 13.446
455
+ - type: precision_at_5
456
+ value: 9.718
457
+ - type: recall_at_1
458
+ value: 25.682
459
+ - type: recall_at_10
460
+ value: 51.712
461
+ - type: recall_at_100
462
+ value: 74.446
463
+ - type: recall_at_1000
464
+ value: 90.472
465
+ - type: recall_at_3
466
+ value: 36.236000000000004
467
+ - type: recall_at_5
468
+ value: 43.234
469
+ - type: map_at_1
470
+ value: 16.073999999999998
471
+ - type: map_at_10
472
+ value: 24.352999999999998
473
+ - type: map_at_100
474
+ value: 25.438
475
+ - type: map_at_1000
476
+ value: 25.545
477
+ - type: map_at_3
478
+ value: 21.614
479
+ - type: map_at_5
480
+ value: 23.104
481
+ - type: mrr_at_1
482
+ value: 19.776
483
+ - type: mrr_at_10
484
+ value: 28.837000000000003
485
+ - type: mrr_at_100
486
+ value: 29.755
487
+ - type: mrr_at_1000
488
+ value: 29.817
489
+ - type: mrr_at_3
490
+ value: 26.201999999999998
491
+ - type: mrr_at_5
492
+ value: 27.714
493
+ - type: ndcg_at_1
494
+ value: 19.776
495
+ - type: ndcg_at_10
496
+ value: 29.701
497
+ - type: ndcg_at_100
498
+ value: 35.307
499
+ - type: ndcg_at_1000
500
+ value: 37.942
501
+ - type: ndcg_at_3
502
+ value: 24.764
503
+ - type: ndcg_at_5
504
+ value: 27.025
505
+ - type: precision_at_1
506
+ value: 19.776
507
+ - type: precision_at_10
508
+ value: 5.659
509
+ - type: precision_at_100
510
+ value: 0.971
511
+ - type: precision_at_1000
512
+ value: 0.133
513
+ - type: precision_at_3
514
+ value: 12.065
515
+ - type: precision_at_5
516
+ value: 8.905000000000001
517
+ - type: recall_at_1
518
+ value: 16.073999999999998
519
+ - type: recall_at_10
520
+ value: 41.647
521
+ - type: recall_at_100
522
+ value: 66.884
523
+ - type: recall_at_1000
524
+ value: 85.91499999999999
525
+ - type: recall_at_3
526
+ value: 27.916
527
+ - type: recall_at_5
528
+ value: 33.729
529
+ - type: map_at_1
530
+ value: 28.444999999999997
531
+ - type: map_at_10
532
+ value: 38.218999999999994
533
+ - type: map_at_100
534
+ value: 39.595
535
+ - type: map_at_1000
536
+ value: 39.709
537
+ - type: map_at_3
538
+ value: 35.586
539
+ - type: map_at_5
540
+ value: 36.895
541
+ - type: mrr_at_1
542
+ value: 34.841
543
+ - type: mrr_at_10
544
+ value: 44.106
545
+ - type: mrr_at_100
546
+ value: 44.98
547
+ - type: mrr_at_1000
548
+ value: 45.03
549
+ - type: mrr_at_3
550
+ value: 41.979
551
+ - type: mrr_at_5
552
+ value: 43.047999999999995
553
+ - type: ndcg_at_1
554
+ value: 34.841
555
+ - type: ndcg_at_10
556
+ value: 43.922
557
+ - type: ndcg_at_100
558
+ value: 49.504999999999995
559
+ - type: ndcg_at_1000
560
+ value: 51.675000000000004
561
+ - type: ndcg_at_3
562
+ value: 39.858
563
+ - type: ndcg_at_5
564
+ value: 41.408
565
+ - type: precision_at_1
566
+ value: 34.841
567
+ - type: precision_at_10
568
+ value: 7.872999999999999
569
+ - type: precision_at_100
570
+ value: 1.2449999999999999
571
+ - type: precision_at_1000
572
+ value: 0.161
573
+ - type: precision_at_3
574
+ value: 18.993
575
+ - type: precision_at_5
576
+ value: 13.032
577
+ - type: recall_at_1
578
+ value: 28.444999999999997
579
+ - type: recall_at_10
580
+ value: 54.984
581
+ - type: recall_at_100
582
+ value: 78.342
583
+ - type: recall_at_1000
584
+ value: 92.77
585
+ - type: recall_at_3
586
+ value: 42.842999999999996
587
+ - type: recall_at_5
588
+ value: 47.247
589
+ - type: map_at_1
590
+ value: 23.072
591
+ - type: map_at_10
592
+ value: 32.354
593
+ - type: map_at_100
594
+ value: 33.800000000000004
595
+ - type: map_at_1000
596
+ value: 33.908
597
+ - type: map_at_3
598
+ value: 29.232000000000003
599
+ - type: map_at_5
600
+ value: 31.049
601
+ - type: mrr_at_1
602
+ value: 29.110000000000003
603
+ - type: mrr_at_10
604
+ value: 38.03
605
+ - type: mrr_at_100
606
+ value: 39.032
607
+ - type: mrr_at_1000
608
+ value: 39.086999999999996
609
+ - type: mrr_at_3
610
+ value: 35.407
611
+ - type: mrr_at_5
612
+ value: 36.76
613
+ - type: ndcg_at_1
614
+ value: 29.110000000000003
615
+ - type: ndcg_at_10
616
+ value: 38.231
617
+ - type: ndcg_at_100
618
+ value: 44.425
619
+ - type: ndcg_at_1000
620
+ value: 46.771
621
+ - type: ndcg_at_3
622
+ value: 33.095
623
+ - type: ndcg_at_5
624
+ value: 35.459
625
+ - type: precision_at_1
626
+ value: 29.110000000000003
627
+ - type: precision_at_10
628
+ value: 7.215000000000001
629
+ - type: precision_at_100
630
+ value: 1.2109999999999999
631
+ - type: precision_at_1000
632
+ value: 0.157
633
+ - type: precision_at_3
634
+ value: 16.058
635
+ - type: precision_at_5
636
+ value: 11.644
637
+ - type: recall_at_1
638
+ value: 23.072
639
+ - type: recall_at_10
640
+ value: 50.285999999999994
641
+ - type: recall_at_100
642
+ value: 76.596
643
+ - type: recall_at_1000
644
+ value: 92.861
645
+ - type: recall_at_3
646
+ value: 35.702
647
+ - type: recall_at_5
648
+ value: 42.152
649
+ - type: map_at_1
650
+ value: 24.937916666666666
651
+ - type: map_at_10
652
+ value: 33.755250000000004
653
+ - type: map_at_100
654
+ value: 34.955999999999996
655
+ - type: map_at_1000
656
+ value: 35.070499999999996
657
+ - type: map_at_3
658
+ value: 30.98708333333333
659
+ - type: map_at_5
660
+ value: 32.51491666666666
661
+ - type: mrr_at_1
662
+ value: 29.48708333333333
663
+ - type: mrr_at_10
664
+ value: 37.92183333333334
665
+ - type: mrr_at_100
666
+ value: 38.76583333333333
667
+ - type: mrr_at_1000
668
+ value: 38.82466666666667
669
+ - type: mrr_at_3
670
+ value: 35.45125
671
+ - type: mrr_at_5
672
+ value: 36.827000000000005
673
+ - type: ndcg_at_1
674
+ value: 29.48708333333333
675
+ - type: ndcg_at_10
676
+ value: 39.05225
677
+ - type: ndcg_at_100
678
+ value: 44.25983333333334
679
+ - type: ndcg_at_1000
680
+ value: 46.568333333333335
681
+ - type: ndcg_at_3
682
+ value: 34.271583333333325
683
+ - type: ndcg_at_5
684
+ value: 36.483916666666666
685
+ - type: precision_at_1
686
+ value: 29.48708333333333
687
+ - type: precision_at_10
688
+ value: 6.865749999999999
689
+ - type: precision_at_100
690
+ value: 1.1195833333333332
691
+ - type: precision_at_1000
692
+ value: 0.15058333333333335
693
+ - type: precision_at_3
694
+ value: 15.742083333333333
695
+ - type: precision_at_5
696
+ value: 11.221916666666667
697
+ - type: recall_at_1
698
+ value: 24.937916666666666
699
+ - type: recall_at_10
700
+ value: 50.650416666666665
701
+ - type: recall_at_100
702
+ value: 73.55383333333334
703
+ - type: recall_at_1000
704
+ value: 89.61691666666667
705
+ - type: recall_at_3
706
+ value: 37.27808333333334
707
+ - type: recall_at_5
708
+ value: 42.99475
709
+ - type: map_at_1
710
+ value: 23.947
711
+ - type: map_at_10
712
+ value: 30.575000000000003
713
+ - type: map_at_100
714
+ value: 31.465
715
+ - type: map_at_1000
716
+ value: 31.558000000000003
717
+ - type: map_at_3
718
+ value: 28.814
719
+ - type: map_at_5
720
+ value: 29.738999999999997
721
+ - type: mrr_at_1
722
+ value: 26.994
723
+ - type: mrr_at_10
724
+ value: 33.415
725
+ - type: mrr_at_100
726
+ value: 34.18
727
+ - type: mrr_at_1000
728
+ value: 34.245
729
+ - type: mrr_at_3
730
+ value: 31.621
731
+ - type: mrr_at_5
732
+ value: 32.549
733
+ - type: ndcg_at_1
734
+ value: 26.994
735
+ - type: ndcg_at_10
736
+ value: 34.482
737
+ - type: ndcg_at_100
738
+ value: 38.915
739
+ - type: ndcg_at_1000
740
+ value: 41.355
741
+ - type: ndcg_at_3
742
+ value: 31.139
743
+ - type: ndcg_at_5
744
+ value: 32.589
745
+ - type: precision_at_1
746
+ value: 26.994
747
+ - type: precision_at_10
748
+ value: 5.322
749
+ - type: precision_at_100
750
+ value: 0.8160000000000001
751
+ - type: precision_at_1000
752
+ value: 0.11100000000000002
753
+ - type: precision_at_3
754
+ value: 13.344000000000001
755
+ - type: precision_at_5
756
+ value: 8.988
757
+ - type: recall_at_1
758
+ value: 23.947
759
+ - type: recall_at_10
760
+ value: 43.647999999999996
761
+ - type: recall_at_100
762
+ value: 63.851
763
+ - type: recall_at_1000
764
+ value: 82.0
765
+ - type: recall_at_3
766
+ value: 34.288000000000004
767
+ - type: recall_at_5
768
+ value: 38.117000000000004
769
+ - type: map_at_1
770
+ value: 16.197
771
+ - type: map_at_10
772
+ value: 22.968
773
+ - type: map_at_100
774
+ value: 24.095
775
+ - type: map_at_1000
776
+ value: 24.217
777
+ - type: map_at_3
778
+ value: 20.771
779
+ - type: map_at_5
780
+ value: 21.995
781
+ - type: mrr_at_1
782
+ value: 19.511
783
+ - type: mrr_at_10
784
+ value: 26.55
785
+ - type: mrr_at_100
786
+ value: 27.500999999999998
787
+ - type: mrr_at_1000
788
+ value: 27.578999999999997
789
+ - type: mrr_at_3
790
+ value: 24.421
791
+ - type: mrr_at_5
792
+ value: 25.604
793
+ - type: ndcg_at_1
794
+ value: 19.511
795
+ - type: ndcg_at_10
796
+ value: 27.386
797
+ - type: ndcg_at_100
798
+ value: 32.828
799
+ - type: ndcg_at_1000
800
+ value: 35.739
801
+ - type: ndcg_at_3
802
+ value: 23.405
803
+ - type: ndcg_at_5
804
+ value: 25.255
805
+ - type: precision_at_1
806
+ value: 19.511
807
+ - type: precision_at_10
808
+ value: 5.017
809
+ - type: precision_at_100
810
+ value: 0.91
811
+ - type: precision_at_1000
812
+ value: 0.133
813
+ - type: precision_at_3
814
+ value: 11.023
815
+ - type: precision_at_5
816
+ value: 8.025
817
+ - type: recall_at_1
818
+ value: 16.197
819
+ - type: recall_at_10
820
+ value: 37.09
821
+ - type: recall_at_100
822
+ value: 61.778
823
+ - type: recall_at_1000
824
+ value: 82.56599999999999
825
+ - type: recall_at_3
826
+ value: 26.034000000000002
827
+ - type: recall_at_5
828
+ value: 30.762
829
+ - type: map_at_1
830
+ value: 25.41
831
+ - type: map_at_10
832
+ value: 33.655
833
+ - type: map_at_100
834
+ value: 34.892
835
+ - type: map_at_1000
836
+ value: 34.995
837
+ - type: map_at_3
838
+ value: 30.94
839
+ - type: map_at_5
840
+ value: 32.303
841
+ - type: mrr_at_1
842
+ value: 29.477999999999998
843
+ - type: mrr_at_10
844
+ value: 37.443
845
+ - type: mrr_at_100
846
+ value: 38.383
847
+ - type: mrr_at_1000
848
+ value: 38.440000000000005
849
+ - type: mrr_at_3
850
+ value: 34.949999999999996
851
+ - type: mrr_at_5
852
+ value: 36.228
853
+ - type: ndcg_at_1
854
+ value: 29.477999999999998
855
+ - type: ndcg_at_10
856
+ value: 38.769
857
+ - type: ndcg_at_100
858
+ value: 44.245000000000005
859
+ - type: ndcg_at_1000
860
+ value: 46.593
861
+ - type: ndcg_at_3
862
+ value: 33.623
863
+ - type: ndcg_at_5
864
+ value: 35.766
865
+ - type: precision_at_1
866
+ value: 29.477999999999998
867
+ - type: precision_at_10
868
+ value: 6.455
869
+ - type: precision_at_100
870
+ value: 1.032
871
+ - type: precision_at_1000
872
+ value: 0.135
873
+ - type: precision_at_3
874
+ value: 14.893999999999998
875
+ - type: precision_at_5
876
+ value: 10.485
877
+ - type: recall_at_1
878
+ value: 25.41
879
+ - type: recall_at_10
880
+ value: 50.669
881
+ - type: recall_at_100
882
+ value: 74.084
883
+ - type: recall_at_1000
884
+ value: 90.435
885
+ - type: recall_at_3
886
+ value: 36.679
887
+ - type: recall_at_5
888
+ value: 41.94
889
+ - type: map_at_1
890
+ value: 23.339
891
+ - type: map_at_10
892
+ value: 31.852000000000004
893
+ - type: map_at_100
894
+ value: 33.411
895
+ - type: map_at_1000
896
+ value: 33.62
897
+ - type: map_at_3
898
+ value: 28.929
899
+ - type: map_at_5
900
+ value: 30.542
901
+ - type: mrr_at_1
902
+ value: 28.063
903
+ - type: mrr_at_10
904
+ value: 36.301
905
+ - type: mrr_at_100
906
+ value: 37.288
907
+ - type: mrr_at_1000
908
+ value: 37.349
909
+ - type: mrr_at_3
910
+ value: 33.663
911
+ - type: mrr_at_5
912
+ value: 35.165
913
+ - type: ndcg_at_1
914
+ value: 28.063
915
+ - type: ndcg_at_10
916
+ value: 37.462
917
+ - type: ndcg_at_100
918
+ value: 43.620999999999995
919
+ - type: ndcg_at_1000
920
+ value: 46.211
921
+ - type: ndcg_at_3
922
+ value: 32.68
923
+ - type: ndcg_at_5
924
+ value: 34.981
925
+ - type: precision_at_1
926
+ value: 28.063
927
+ - type: precision_at_10
928
+ value: 7.1739999999999995
929
+ - type: precision_at_100
930
+ value: 1.486
931
+ - type: precision_at_1000
932
+ value: 0.23500000000000001
933
+ - type: precision_at_3
934
+ value: 15.217
935
+ - type: precision_at_5
936
+ value: 11.265
937
+ - type: recall_at_1
938
+ value: 23.339
939
+ - type: recall_at_10
940
+ value: 48.376999999999995
941
+ - type: recall_at_100
942
+ value: 76.053
943
+ - type: recall_at_1000
944
+ value: 92.455
945
+ - type: recall_at_3
946
+ value: 34.735
947
+ - type: recall_at_5
948
+ value: 40.71
949
+ - type: map_at_1
950
+ value: 18.925
951
+ - type: map_at_10
952
+ value: 26.017000000000003
953
+ - type: map_at_100
954
+ value: 27.034000000000002
955
+ - type: map_at_1000
956
+ value: 27.156000000000002
957
+ - type: map_at_3
958
+ value: 23.604
959
+ - type: map_at_5
960
+ value: 24.75
961
+ - type: mrr_at_1
962
+ value: 20.333000000000002
963
+ - type: mrr_at_10
964
+ value: 27.915
965
+ - type: mrr_at_100
966
+ value: 28.788000000000004
967
+ - type: mrr_at_1000
968
+ value: 28.877999999999997
969
+ - type: mrr_at_3
970
+ value: 25.446999999999996
971
+ - type: mrr_at_5
972
+ value: 26.648
973
+ - type: ndcg_at_1
974
+ value: 20.333000000000002
975
+ - type: ndcg_at_10
976
+ value: 30.673000000000002
977
+ - type: ndcg_at_100
978
+ value: 35.618
979
+ - type: ndcg_at_1000
980
+ value: 38.517
981
+ - type: ndcg_at_3
982
+ value: 25.71
983
+ - type: ndcg_at_5
984
+ value: 27.679
985
+ - type: precision_at_1
986
+ value: 20.333000000000002
987
+ - type: precision_at_10
988
+ value: 4.9910000000000005
989
+ - type: precision_at_100
990
+ value: 0.8130000000000001
991
+ - type: precision_at_1000
992
+ value: 0.117
993
+ - type: precision_at_3
994
+ value: 11.029
995
+ - type: precision_at_5
996
+ value: 7.8740000000000006
997
+ - type: recall_at_1
998
+ value: 18.925
999
+ - type: recall_at_10
1000
+ value: 43.311
1001
+ - type: recall_at_100
1002
+ value: 66.308
1003
+ - type: recall_at_1000
1004
+ value: 87.49
1005
+ - type: recall_at_3
1006
+ value: 29.596
1007
+ - type: recall_at_5
1008
+ value: 34.245
1009
+ - task:
1010
+ type: Retrieval
1011
+ dataset:
1012
+ name: MTEB ClimateFEVER
1013
+ type: climate-fever
1014
+ config: default
1015
+ split: test
1016
+ revision: None
1017
+ metrics:
1018
+ - type: map_at_1
1019
+ value: 13.714
1020
+ - type: map_at_10
1021
+ value: 23.194
1022
+ - type: map_at_100
1023
+ value: 24.976000000000003
1024
+ - type: map_at_1000
1025
+ value: 25.166
1026
+ - type: map_at_3
1027
+ value: 19.709
1028
+ - type: map_at_5
1029
+ value: 21.523999999999997
1030
+ - type: mrr_at_1
1031
+ value: 30.619000000000003
1032
+ - type: mrr_at_10
1033
+ value: 42.563
1034
+ - type: mrr_at_100
1035
+ value: 43.386
1036
+ - type: mrr_at_1000
1037
+ value: 43.423
1038
+ - type: mrr_at_3
1039
+ value: 39.555
1040
+ - type: mrr_at_5
1041
+ value: 41.268
1042
+ - type: ndcg_at_1
1043
+ value: 30.619000000000003
1044
+ - type: ndcg_at_10
1045
+ value: 31.836
1046
+ - type: ndcg_at_100
1047
+ value: 38.652
1048
+ - type: ndcg_at_1000
1049
+ value: 42.088
1050
+ - type: ndcg_at_3
1051
+ value: 26.733
1052
+ - type: ndcg_at_5
1053
+ value: 28.435
1054
+ - type: precision_at_1
1055
+ value: 30.619000000000003
1056
+ - type: precision_at_10
1057
+ value: 9.751999999999999
1058
+ - type: precision_at_100
1059
+ value: 1.71
1060
+ - type: precision_at_1000
1061
+ value: 0.23500000000000001
1062
+ - type: precision_at_3
1063
+ value: 19.935
1064
+ - type: precision_at_5
1065
+ value: 14.984
1066
+ - type: recall_at_1
1067
+ value: 13.714
1068
+ - type: recall_at_10
1069
+ value: 37.26
1070
+ - type: recall_at_100
1071
+ value: 60.546
1072
+ - type: recall_at_1000
1073
+ value: 79.899
1074
+ - type: recall_at_3
1075
+ value: 24.325
1076
+ - type: recall_at_5
1077
+ value: 29.725
1078
+ - task:
1079
+ type: Retrieval
1080
+ dataset:
1081
+ name: MTEB DBPedia
1082
+ type: dbpedia-entity
1083
+ config: default
1084
+ split: test
1085
+ revision: None
1086
+ metrics:
1087
+ - type: map_at_1
1088
+ value: 8.462
1089
+ - type: map_at_10
1090
+ value: 18.637
1091
+ - type: map_at_100
1092
+ value: 26.131999999999998
1093
+ - type: map_at_1000
1094
+ value: 27.607
1095
+ - type: map_at_3
1096
+ value: 13.333
1097
+ - type: map_at_5
1098
+ value: 15.654000000000002
1099
+ - type: mrr_at_1
1100
+ value: 66.25
1101
+ - type: mrr_at_10
1102
+ value: 74.32600000000001
1103
+ - type: mrr_at_100
1104
+ value: 74.60900000000001
1105
+ - type: mrr_at_1000
1106
+ value: 74.62
1107
+ - type: mrr_at_3
1108
+ value: 72.667
1109
+ - type: mrr_at_5
1110
+ value: 73.817
1111
+ - type: ndcg_at_1
1112
+ value: 53.87499999999999
1113
+ - type: ndcg_at_10
1114
+ value: 40.028999999999996
1115
+ - type: ndcg_at_100
1116
+ value: 44.199
1117
+ - type: ndcg_at_1000
1118
+ value: 51.629999999999995
1119
+ - type: ndcg_at_3
1120
+ value: 44.113
1121
+ - type: ndcg_at_5
1122
+ value: 41.731
1123
+ - type: precision_at_1
1124
+ value: 66.25
1125
+ - type: precision_at_10
1126
+ value: 31.900000000000002
1127
+ - type: precision_at_100
1128
+ value: 10.043000000000001
1129
+ - type: precision_at_1000
1130
+ value: 1.926
1131
+ - type: precision_at_3
1132
+ value: 47.417
1133
+ - type: precision_at_5
1134
+ value: 40.65
1135
+ - type: recall_at_1
1136
+ value: 8.462
1137
+ - type: recall_at_10
1138
+ value: 24.293
1139
+ - type: recall_at_100
1140
+ value: 50.146
1141
+ - type: recall_at_1000
1142
+ value: 74.034
1143
+ - type: recall_at_3
1144
+ value: 14.967
1145
+ - type: recall_at_5
1146
+ value: 18.682000000000002
1147
+ - task:
1148
+ type: Classification
1149
+ dataset:
1150
+ name: MTEB EmotionClassification
1151
+ type: mteb/emotion
1152
+ config: default
1153
+ split: test
1154
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1155
+ metrics:
1156
+ - type: accuracy
1157
+ value: 47.84499999999999
1158
+ - type: f1
1159
+ value: 42.48106691979349
1160
+ - task:
1161
+ type: Retrieval
1162
+ dataset:
1163
+ name: MTEB FEVER
1164
+ type: fever
1165
+ config: default
1166
+ split: test
1167
+ revision: None
1168
+ metrics:
1169
+ - type: map_at_1
1170
+ value: 74.034
1171
+ - type: map_at_10
1172
+ value: 82.76
1173
+ - type: map_at_100
1174
+ value: 82.968
1175
+ - type: map_at_1000
1176
+ value: 82.98299999999999
1177
+ - type: map_at_3
1178
+ value: 81.768
1179
+ - type: map_at_5
1180
+ value: 82.418
1181
+ - type: mrr_at_1
1182
+ value: 80.048
1183
+ - type: mrr_at_10
1184
+ value: 87.64999999999999
1185
+ - type: mrr_at_100
1186
+ value: 87.712
1187
+ - type: mrr_at_1000
1188
+ value: 87.713
1189
+ - type: mrr_at_3
1190
+ value: 87.01100000000001
1191
+ - type: mrr_at_5
1192
+ value: 87.466
1193
+ - type: ndcg_at_1
1194
+ value: 80.048
1195
+ - type: ndcg_at_10
1196
+ value: 86.643
1197
+ - type: ndcg_at_100
1198
+ value: 87.361
1199
+ - type: ndcg_at_1000
1200
+ value: 87.606
1201
+ - type: ndcg_at_3
1202
+ value: 85.137
1203
+ - type: ndcg_at_5
1204
+ value: 86.016
1205
+ - type: precision_at_1
1206
+ value: 80.048
1207
+ - type: precision_at_10
1208
+ value: 10.372
1209
+ - type: precision_at_100
1210
+ value: 1.093
1211
+ - type: precision_at_1000
1212
+ value: 0.11299999999999999
1213
+ - type: precision_at_3
1214
+ value: 32.638
1215
+ - type: precision_at_5
1216
+ value: 20.177
1217
+ - type: recall_at_1
1218
+ value: 74.034
1219
+ - type: recall_at_10
1220
+ value: 93.769
1221
+ - type: recall_at_100
1222
+ value: 96.569
1223
+ - type: recall_at_1000
1224
+ value: 98.039
1225
+ - type: recall_at_3
1226
+ value: 89.581
1227
+ - type: recall_at_5
1228
+ value: 91.906
1229
+ - task:
1230
+ type: Retrieval
1231
+ dataset:
1232
+ name: MTEB FiQA2018
1233
+ type: fiqa
1234
+ config: default
1235
+ split: test
1236
+ revision: None
1237
+ metrics:
1238
+ - type: map_at_1
1239
+ value: 20.5
1240
+ - type: map_at_10
1241
+ value: 32.857
1242
+ - type: map_at_100
1243
+ value: 34.589
1244
+ - type: map_at_1000
1245
+ value: 34.778
1246
+ - type: map_at_3
1247
+ value: 29.160999999999998
1248
+ - type: map_at_5
1249
+ value: 31.033
1250
+ - type: mrr_at_1
1251
+ value: 40.123
1252
+ - type: mrr_at_10
1253
+ value: 48.776
1254
+ - type: mrr_at_100
1255
+ value: 49.495
1256
+ - type: mrr_at_1000
1257
+ value: 49.539
1258
+ - type: mrr_at_3
1259
+ value: 46.605000000000004
1260
+ - type: mrr_at_5
1261
+ value: 47.654
1262
+ - type: ndcg_at_1
1263
+ value: 40.123
1264
+ - type: ndcg_at_10
1265
+ value: 40.343
1266
+ - type: ndcg_at_100
1267
+ value: 46.56
1268
+ - type: ndcg_at_1000
1269
+ value: 49.777
1270
+ - type: ndcg_at_3
1271
+ value: 37.322
1272
+ - type: ndcg_at_5
1273
+ value: 37.791000000000004
1274
+ - type: precision_at_1
1275
+ value: 40.123
1276
+ - type: precision_at_10
1277
+ value: 11.08
1278
+ - type: precision_at_100
1279
+ value: 1.752
1280
+ - type: precision_at_1000
1281
+ value: 0.232
1282
+ - type: precision_at_3
1283
+ value: 24.897
1284
+ - type: precision_at_5
1285
+ value: 17.809
1286
+ - type: recall_at_1
1287
+ value: 20.5
1288
+ - type: recall_at_10
1289
+ value: 46.388
1290
+ - type: recall_at_100
1291
+ value: 69.552
1292
+ - type: recall_at_1000
1293
+ value: 89.011
1294
+ - type: recall_at_3
1295
+ value: 33.617999999999995
1296
+ - type: recall_at_5
1297
+ value: 38.211
1298
+ - task:
1299
+ type: Retrieval
1300
+ dataset:
1301
+ name: MTEB HotpotQA
1302
+ type: hotpotqa
1303
+ config: default
1304
+ split: test
1305
+ revision: None
1306
+ metrics:
1307
+ - type: map_at_1
1308
+ value: 39.135999999999996
1309
+ - type: map_at_10
1310
+ value: 61.673
1311
+ - type: map_at_100
1312
+ value: 62.562
1313
+ - type: map_at_1000
1314
+ value: 62.62
1315
+ - type: map_at_3
1316
+ value: 58.467999999999996
1317
+ - type: map_at_5
1318
+ value: 60.463
1319
+ - type: mrr_at_1
1320
+ value: 78.271
1321
+ - type: mrr_at_10
1322
+ value: 84.119
1323
+ - type: mrr_at_100
1324
+ value: 84.29299999999999
1325
+ - type: mrr_at_1000
1326
+ value: 84.299
1327
+ - type: mrr_at_3
1328
+ value: 83.18900000000001
1329
+ - type: mrr_at_5
1330
+ value: 83.786
1331
+ - type: ndcg_at_1
1332
+ value: 78.271
1333
+ - type: ndcg_at_10
1334
+ value: 69.935
1335
+ - type: ndcg_at_100
1336
+ value: 73.01299999999999
1337
+ - type: ndcg_at_1000
1338
+ value: 74.126
1339
+ - type: ndcg_at_3
1340
+ value: 65.388
1341
+ - type: ndcg_at_5
1342
+ value: 67.906
1343
+ - type: precision_at_1
1344
+ value: 78.271
1345
+ - type: precision_at_10
1346
+ value: 14.562
1347
+ - type: precision_at_100
1348
+ value: 1.6969999999999998
1349
+ - type: precision_at_1000
1350
+ value: 0.184
1351
+ - type: precision_at_3
1352
+ value: 41.841
1353
+ - type: precision_at_5
1354
+ value: 27.087
1355
+ - type: recall_at_1
1356
+ value: 39.135999999999996
1357
+ - type: recall_at_10
1358
+ value: 72.809
1359
+ - type: recall_at_100
1360
+ value: 84.86200000000001
1361
+ - type: recall_at_1000
1362
+ value: 92.208
1363
+ - type: recall_at_3
1364
+ value: 62.76199999999999
1365
+ - type: recall_at_5
1366
+ value: 67.718
1367
+ - task:
1368
+ type: Classification
1369
+ dataset:
1370
+ name: MTEB ImdbClassification
1371
+ type: mteb/imdb
1372
+ config: default
1373
+ split: test
1374
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1375
+ metrics:
1376
+ - type: accuracy
1377
+ value: 90.60600000000001
1378
+ - type: ap
1379
+ value: 86.6579587804335
1380
+ - type: f1
1381
+ value: 90.5938853929307
1382
+ - task:
1383
+ type: Retrieval
1384
+ dataset:
1385
+ name: MTEB MSMARCO
1386
+ type: msmarco
1387
+ config: default
1388
+ split: dev
1389
+ revision: None
1390
+ metrics:
1391
+ - type: map_at_1
1392
+ value: 21.852
1393
+ - type: map_at_10
1394
+ value: 33.982
1395
+ - type: map_at_100
1396
+ value: 35.116
1397
+ - type: map_at_1000
1398
+ value: 35.167
1399
+ - type: map_at_3
1400
+ value: 30.134
1401
+ - type: map_at_5
1402
+ value: 32.340999999999994
1403
+ - type: mrr_at_1
1404
+ value: 22.479
1405
+ - type: mrr_at_10
1406
+ value: 34.594
1407
+ - type: mrr_at_100
1408
+ value: 35.672
1409
+ - type: mrr_at_1000
1410
+ value: 35.716
1411
+ - type: mrr_at_3
1412
+ value: 30.84
1413
+ - type: mrr_at_5
1414
+ value: 32.998
1415
+ - type: ndcg_at_1
1416
+ value: 22.493
1417
+ - type: ndcg_at_10
1418
+ value: 40.833000000000006
1419
+ - type: ndcg_at_100
1420
+ value: 46.357
1421
+ - type: ndcg_at_1000
1422
+ value: 47.637
1423
+ - type: ndcg_at_3
1424
+ value: 32.995999999999995
1425
+ - type: ndcg_at_5
1426
+ value: 36.919000000000004
1427
+ - type: precision_at_1
1428
+ value: 22.493
1429
+ - type: precision_at_10
1430
+ value: 6.465999999999999
1431
+ - type: precision_at_100
1432
+ value: 0.9249999999999999
1433
+ - type: precision_at_1000
1434
+ value: 0.104
1435
+ - type: precision_at_3
1436
+ value: 14.030999999999999
1437
+ - type: precision_at_5
1438
+ value: 10.413
1439
+ - type: recall_at_1
1440
+ value: 21.852
1441
+ - type: recall_at_10
1442
+ value: 61.934999999999995
1443
+ - type: recall_at_100
1444
+ value: 87.611
1445
+ - type: recall_at_1000
1446
+ value: 97.441
1447
+ - type: recall_at_3
1448
+ value: 40.583999999999996
1449
+ - type: recall_at_5
1450
+ value: 49.992999999999995
1451
+ - task:
1452
+ type: Classification
1453
+ dataset:
1454
+ name: MTEB MTOPDomainClassification (en)
1455
+ type: mteb/mtop_domain
1456
+ config: en
1457
+ split: test
1458
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1459
+ metrics:
1460
+ - type: accuracy
1461
+ value: 93.36069311445507
1462
+ - type: f1
1463
+ value: 93.16456330371453
1464
+ - task:
1465
+ type: Classification
1466
+ dataset:
1467
+ name: MTEB MTOPIntentClassification (en)
1468
+ type: mteb/mtop_intent
1469
+ config: en
1470
+ split: test
1471
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1472
+ metrics:
1473
+ - type: accuracy
1474
+ value: 74.74692202462381
1475
+ - type: f1
1476
+ value: 58.17903579421599
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ name: MTEB MassiveIntentClassification (en)
1481
+ type: mteb/amazon_massive_intent
1482
+ config: en
1483
+ split: test
1484
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 74.80833893745796
1488
+ - type: f1
1489
+ value: 72.70786592684664
1490
+ - task:
1491
+ type: Classification
1492
+ dataset:
1493
+ name: MTEB MassiveScenarioClassification (en)
1494
+ type: mteb/amazon_massive_scenario
1495
+ config: en
1496
+ split: test
1497
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1498
+ metrics:
1499
+ - type: accuracy
1500
+ value: 78.69872225958305
1501
+ - type: f1
1502
+ value: 78.61626934504731
1503
+ - task:
1504
+ type: Clustering
1505
+ dataset:
1506
+ name: MTEB MedrxivClusteringP2P
1507
+ type: mteb/medrxiv-clustering-p2p
1508
+ config: default
1509
+ split: test
1510
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1511
+ metrics:
1512
+ - type: v_measure
1513
+ value: 33.058658628717694
1514
+ - task:
1515
+ type: Clustering
1516
+ dataset:
1517
+ name: MTEB MedrxivClusteringS2S
1518
+ type: mteb/medrxiv-clustering-s2s
1519
+ config: default
1520
+ split: test
1521
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1522
+ metrics:
1523
+ - type: v_measure
1524
+ value: 30.85561739360599
1525
+ - task:
1526
+ type: Reranking
1527
+ dataset:
1528
+ name: MTEB MindSmallReranking
1529
+ type: mteb/mind_small
1530
+ config: default
1531
+ split: test
1532
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1533
+ metrics:
1534
+ - type: map
1535
+ value: 31.290259910144385
1536
+ - type: mrr
1537
+ value: 32.44223046102856
1538
+ - task:
1539
+ type: Retrieval
1540
+ dataset:
1541
+ name: MTEB NFCorpus
1542
+ type: nfcorpus
1543
+ config: default
1544
+ split: test
1545
+ revision: None
1546
+ metrics:
1547
+ - type: map_at_1
1548
+ value: 5.288
1549
+ - type: map_at_10
1550
+ value: 12.267999999999999
1551
+ - type: map_at_100
1552
+ value: 15.557000000000002
1553
+ - type: map_at_1000
1554
+ value: 16.98
1555
+ - type: map_at_3
1556
+ value: 8.866
1557
+ - type: map_at_5
1558
+ value: 10.418
1559
+ - type: mrr_at_1
1560
+ value: 43.653
1561
+ - type: mrr_at_10
1562
+ value: 52.681
1563
+ - type: mrr_at_100
1564
+ value: 53.315999999999995
1565
+ - type: mrr_at_1000
1566
+ value: 53.357
1567
+ - type: mrr_at_3
1568
+ value: 51.393
1569
+ - type: mrr_at_5
1570
+ value: 51.903999999999996
1571
+ - type: ndcg_at_1
1572
+ value: 42.415000000000006
1573
+ - type: ndcg_at_10
1574
+ value: 34.305
1575
+ - type: ndcg_at_100
1576
+ value: 30.825999999999997
1577
+ - type: ndcg_at_1000
1578
+ value: 39.393
1579
+ - type: ndcg_at_3
1580
+ value: 39.931
1581
+ - type: ndcg_at_5
1582
+ value: 37.519999999999996
1583
+ - type: precision_at_1
1584
+ value: 43.653
1585
+ - type: precision_at_10
1586
+ value: 25.728
1587
+ - type: precision_at_100
1588
+ value: 7.932
1589
+ - type: precision_at_1000
1590
+ value: 2.07
1591
+ - type: precision_at_3
1592
+ value: 38.184000000000005
1593
+ - type: precision_at_5
1594
+ value: 32.879000000000005
1595
+ - type: recall_at_1
1596
+ value: 5.288
1597
+ - type: recall_at_10
1598
+ value: 16.195
1599
+ - type: recall_at_100
1600
+ value: 31.135
1601
+ - type: recall_at_1000
1602
+ value: 61.531000000000006
1603
+ - type: recall_at_3
1604
+ value: 10.313
1605
+ - type: recall_at_5
1606
+ value: 12.754999999999999
1607
+ - task:
1608
+ type: Retrieval
1609
+ dataset:
1610
+ name: MTEB NQ
1611
+ type: nq
1612
+ config: default
1613
+ split: test
1614
+ revision: None
1615
+ metrics:
1616
+ - type: map_at_1
1617
+ value: 28.216
1618
+ - type: map_at_10
1619
+ value: 42.588
1620
+ - type: map_at_100
1621
+ value: 43.702999999999996
1622
+ - type: map_at_1000
1623
+ value: 43.739
1624
+ - type: map_at_3
1625
+ value: 38.177
1626
+ - type: map_at_5
1627
+ value: 40.754000000000005
1628
+ - type: mrr_at_1
1629
+ value: 31.866
1630
+ - type: mrr_at_10
1631
+ value: 45.189
1632
+ - type: mrr_at_100
1633
+ value: 46.056000000000004
1634
+ - type: mrr_at_1000
1635
+ value: 46.081
1636
+ - type: mrr_at_3
1637
+ value: 41.526999999999994
1638
+ - type: mrr_at_5
1639
+ value: 43.704
1640
+ - type: ndcg_at_1
1641
+ value: 31.837
1642
+ - type: ndcg_at_10
1643
+ value: 50.178
1644
+ - type: ndcg_at_100
1645
+ value: 54.98800000000001
1646
+ - type: ndcg_at_1000
1647
+ value: 55.812
1648
+ - type: ndcg_at_3
1649
+ value: 41.853
1650
+ - type: ndcg_at_5
1651
+ value: 46.153
1652
+ - type: precision_at_1
1653
+ value: 31.837
1654
+ - type: precision_at_10
1655
+ value: 8.43
1656
+ - type: precision_at_100
1657
+ value: 1.1119999999999999
1658
+ - type: precision_at_1000
1659
+ value: 0.11900000000000001
1660
+ - type: precision_at_3
1661
+ value: 19.023
1662
+ - type: precision_at_5
1663
+ value: 13.911000000000001
1664
+ - type: recall_at_1
1665
+ value: 28.216
1666
+ - type: recall_at_10
1667
+ value: 70.8
1668
+ - type: recall_at_100
1669
+ value: 91.857
1670
+ - type: recall_at_1000
1671
+ value: 97.941
1672
+ - type: recall_at_3
1673
+ value: 49.196
1674
+ - type: recall_at_5
1675
+ value: 59.072
1676
+ - task:
1677
+ type: Retrieval
1678
+ dataset:
1679
+ name: MTEB QuoraRetrieval
1680
+ type: quora
1681
+ config: default
1682
+ split: test
1683
+ revision: None
1684
+ metrics:
1685
+ - type: map_at_1
1686
+ value: 71.22800000000001
1687
+ - type: map_at_10
1688
+ value: 85.115
1689
+ - type: map_at_100
1690
+ value: 85.72
1691
+ - type: map_at_1000
1692
+ value: 85.737
1693
+ - type: map_at_3
1694
+ value: 82.149
1695
+ - type: map_at_5
1696
+ value: 84.029
1697
+ - type: mrr_at_1
1698
+ value: 81.96
1699
+ - type: mrr_at_10
1700
+ value: 88.00200000000001
1701
+ - type: mrr_at_100
1702
+ value: 88.088
1703
+ - type: mrr_at_1000
1704
+ value: 88.089
1705
+ - type: mrr_at_3
1706
+ value: 87.055
1707
+ - type: mrr_at_5
1708
+ value: 87.715
1709
+ - type: ndcg_at_1
1710
+ value: 82.01
1711
+ - type: ndcg_at_10
1712
+ value: 88.78
1713
+ - type: ndcg_at_100
1714
+ value: 89.91
1715
+ - type: ndcg_at_1000
1716
+ value: 90.013
1717
+ - type: ndcg_at_3
1718
+ value: 85.957
1719
+ - type: ndcg_at_5
1720
+ value: 87.56
1721
+ - type: precision_at_1
1722
+ value: 82.01
1723
+ - type: precision_at_10
1724
+ value: 13.462
1725
+ - type: precision_at_100
1726
+ value: 1.528
1727
+ - type: precision_at_1000
1728
+ value: 0.157
1729
+ - type: precision_at_3
1730
+ value: 37.553
1731
+ - type: precision_at_5
1732
+ value: 24.732000000000003
1733
+ - type: recall_at_1
1734
+ value: 71.22800000000001
1735
+ - type: recall_at_10
1736
+ value: 95.69
1737
+ - type: recall_at_100
1738
+ value: 99.531
1739
+ - type: recall_at_1000
1740
+ value: 99.98
1741
+ - type: recall_at_3
1742
+ value: 87.632
1743
+ - type: recall_at_5
1744
+ value: 92.117
1745
+ - task:
1746
+ type: Clustering
1747
+ dataset:
1748
+ name: MTEB RedditClustering
1749
+ type: mteb/reddit-clustering
1750
+ config: default
1751
+ split: test
1752
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1753
+ metrics:
1754
+ - type: v_measure
1755
+ value: 52.31768034366916
1756
+ - task:
1757
+ type: Clustering
1758
+ dataset:
1759
+ name: MTEB RedditClusteringP2P
1760
+ type: mteb/reddit-clustering-p2p
1761
+ config: default
1762
+ split: test
1763
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1764
+ metrics:
1765
+ - type: v_measure
1766
+ value: 60.640266772723606
1767
+ - task:
1768
+ type: Retrieval
1769
+ dataset:
1770
+ name: MTEB SCIDOCS
1771
+ type: scidocs
1772
+ config: default
1773
+ split: test
1774
+ revision: None
1775
+ metrics:
1776
+ - type: map_at_1
1777
+ value: 4.7780000000000005
1778
+ - type: map_at_10
1779
+ value: 12.299
1780
+ - type: map_at_100
1781
+ value: 14.363000000000001
1782
+ - type: map_at_1000
1783
+ value: 14.71
1784
+ - type: map_at_3
1785
+ value: 8.738999999999999
1786
+ - type: map_at_5
1787
+ value: 10.397
1788
+ - type: mrr_at_1
1789
+ value: 23.599999999999998
1790
+ - type: mrr_at_10
1791
+ value: 34.845
1792
+ - type: mrr_at_100
1793
+ value: 35.916
1794
+ - type: mrr_at_1000
1795
+ value: 35.973
1796
+ - type: mrr_at_3
1797
+ value: 31.7
1798
+ - type: mrr_at_5
1799
+ value: 33.535
1800
+ - type: ndcg_at_1
1801
+ value: 23.599999999999998
1802
+ - type: ndcg_at_10
1803
+ value: 20.522000000000002
1804
+ - type: ndcg_at_100
1805
+ value: 28.737000000000002
1806
+ - type: ndcg_at_1000
1807
+ value: 34.596
1808
+ - type: ndcg_at_3
1809
+ value: 19.542
1810
+ - type: ndcg_at_5
1811
+ value: 16.958000000000002
1812
+ - type: precision_at_1
1813
+ value: 23.599999999999998
1814
+ - type: precision_at_10
1815
+ value: 10.67
1816
+ - type: precision_at_100
1817
+ value: 2.259
1818
+ - type: precision_at_1000
1819
+ value: 0.367
1820
+ - type: precision_at_3
1821
+ value: 18.333
1822
+ - type: precision_at_5
1823
+ value: 14.879999999999999
1824
+ - type: recall_at_1
1825
+ value: 4.7780000000000005
1826
+ - type: recall_at_10
1827
+ value: 21.617
1828
+ - type: recall_at_100
1829
+ value: 45.905
1830
+ - type: recall_at_1000
1831
+ value: 74.42
1832
+ - type: recall_at_3
1833
+ value: 11.148
1834
+ - type: recall_at_5
1835
+ value: 15.082999999999998
1836
+ - task:
1837
+ type: STS
1838
+ dataset:
1839
+ name: MTEB SICK-R
1840
+ type: mteb/sickr-sts
1841
+ config: default
1842
+ split: test
1843
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1844
+ metrics:
1845
+ - type: cos_sim_pearson
1846
+ value: 83.22372750297885
1847
+ - type: cos_sim_spearman
1848
+ value: 79.40972617119405
1849
+ - type: euclidean_pearson
1850
+ value: 80.6101072020434
1851
+ - type: euclidean_spearman
1852
+ value: 79.53844217225202
1853
+ - type: manhattan_pearson
1854
+ value: 80.57265975286111
1855
+ - type: manhattan_spearman
1856
+ value: 79.46335611792958
1857
+ - task:
1858
+ type: STS
1859
+ dataset:
1860
+ name: MTEB STS12
1861
+ type: mteb/sts12-sts
1862
+ config: default
1863
+ split: test
1864
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1865
+ metrics:
1866
+ - type: cos_sim_pearson
1867
+ value: 85.43713315520749
1868
+ - type: cos_sim_spearman
1869
+ value: 77.44128693329532
1870
+ - type: euclidean_pearson
1871
+ value: 81.63869928101123
1872
+ - type: euclidean_spearman
1873
+ value: 77.29512977961515
1874
+ - type: manhattan_pearson
1875
+ value: 81.63704185566183
1876
+ - type: manhattan_spearman
1877
+ value: 77.29909412738657
1878
+ - task:
1879
+ type: STS
1880
+ dataset:
1881
+ name: MTEB STS13
1882
+ type: mteb/sts13-sts
1883
+ config: default
1884
+ split: test
1885
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1886
+ metrics:
1887
+ - type: cos_sim_pearson
1888
+ value: 81.59451537860527
1889
+ - type: cos_sim_spearman
1890
+ value: 82.97994638856723
1891
+ - type: euclidean_pearson
1892
+ value: 82.89478688288412
1893
+ - type: euclidean_spearman
1894
+ value: 83.58740751053104
1895
+ - type: manhattan_pearson
1896
+ value: 82.69140840941608
1897
+ - type: manhattan_spearman
1898
+ value: 83.33665956040555
1899
+ - task:
1900
+ type: STS
1901
+ dataset:
1902
+ name: MTEB STS14
1903
+ type: mteb/sts14-sts
1904
+ config: default
1905
+ split: test
1906
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1907
+ metrics:
1908
+ - type: cos_sim_pearson
1909
+ value: 82.00756527711764
1910
+ - type: cos_sim_spearman
1911
+ value: 81.83560996841379
1912
+ - type: euclidean_pearson
1913
+ value: 82.07684151976518
1914
+ - type: euclidean_spearman
1915
+ value: 82.00913052060511
1916
+ - type: manhattan_pearson
1917
+ value: 82.05690778488794
1918
+ - type: manhattan_spearman
1919
+ value: 82.02260252019525
1920
+ - task:
1921
+ type: STS
1922
+ dataset:
1923
+ name: MTEB STS15
1924
+ type: mteb/sts15-sts
1925
+ config: default
1926
+ split: test
1927
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1928
+ metrics:
1929
+ - type: cos_sim_pearson
1930
+ value: 86.13710262895447
1931
+ - type: cos_sim_spearman
1932
+ value: 87.26412811156248
1933
+ - type: euclidean_pearson
1934
+ value: 86.94151453230228
1935
+ - type: euclidean_spearman
1936
+ value: 87.5363796699571
1937
+ - type: manhattan_pearson
1938
+ value: 86.86989424083748
1939
+ - type: manhattan_spearman
1940
+ value: 87.47315940781353
1941
+ - task:
1942
+ type: STS
1943
+ dataset:
1944
+ name: MTEB STS16
1945
+ type: mteb/sts16-sts
1946
+ config: default
1947
+ split: test
1948
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1949
+ metrics:
1950
+ - type: cos_sim_pearson
1951
+ value: 83.0230597603627
1952
+ - type: cos_sim_spearman
1953
+ value: 84.93344499318864
1954
+ - type: euclidean_pearson
1955
+ value: 84.23754743431141
1956
+ - type: euclidean_spearman
1957
+ value: 85.09707376597099
1958
+ - type: manhattan_pearson
1959
+ value: 84.04325160987763
1960
+ - type: manhattan_spearman
1961
+ value: 84.89353071339909
1962
+ - task:
1963
+ type: STS
1964
+ dataset:
1965
+ name: MTEB STS17 (en-en)
1966
+ type: mteb/sts17-crosslingual-sts
1967
+ config: en-en
1968
+ split: test
1969
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1970
+ metrics:
1971
+ - type: cos_sim_pearson
1972
+ value: 86.75620824563921
1973
+ - type: cos_sim_spearman
1974
+ value: 87.15065513706398
1975
+ - type: euclidean_pearson
1976
+ value: 88.26281533633521
1977
+ - type: euclidean_spearman
1978
+ value: 87.51963738643983
1979
+ - type: manhattan_pearson
1980
+ value: 88.25599267618065
1981
+ - type: manhattan_spearman
1982
+ value: 87.58048736047483
1983
+ - task:
1984
+ type: STS
1985
+ dataset:
1986
+ name: MTEB STS22 (en)
1987
+ type: mteb/sts22-crosslingual-sts
1988
+ config: en
1989
+ split: test
1990
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1991
+ metrics:
1992
+ - type: cos_sim_pearson
1993
+ value: 64.74645319195137
1994
+ - type: cos_sim_spearman
1995
+ value: 65.29996325037214
1996
+ - type: euclidean_pearson
1997
+ value: 67.04297794086443
1998
+ - type: euclidean_spearman
1999
+ value: 65.43841726694343
2000
+ - type: manhattan_pearson
2001
+ value: 67.39459955690904
2002
+ - type: manhattan_spearman
2003
+ value: 65.92864704413651
2004
+ - task:
2005
+ type: STS
2006
+ dataset:
2007
+ name: MTEB STSBenchmark
2008
+ type: mteb/stsbenchmark-sts
2009
+ config: default
2010
+ split: test
2011
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2012
+ metrics:
2013
+ - type: cos_sim_pearson
2014
+ value: 84.31291020270801
2015
+ - type: cos_sim_spearman
2016
+ value: 85.86473738688068
2017
+ - type: euclidean_pearson
2018
+ value: 85.65537275064152
2019
+ - type: euclidean_spearman
2020
+ value: 86.13087454209642
2021
+ - type: manhattan_pearson
2022
+ value: 85.43946955047609
2023
+ - type: manhattan_spearman
2024
+ value: 85.91568175344916
2025
+ - task:
2026
+ type: Reranking
2027
+ dataset:
2028
+ name: MTEB SciDocsRR
2029
+ type: mteb/scidocs-reranking
2030
+ config: default
2031
+ split: test
2032
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2033
+ metrics:
2034
+ - type: map
2035
+ value: 85.93798118350695
2036
+ - type: mrr
2037
+ value: 95.93536274908824
2038
+ - task:
2039
+ type: Retrieval
2040
+ dataset:
2041
+ name: MTEB SciFact
2042
+ type: scifact
2043
+ config: default
2044
+ split: test
2045
+ revision: None
2046
+ metrics:
2047
+ - type: map_at_1
2048
+ value: 57.594
2049
+ - type: map_at_10
2050
+ value: 66.81899999999999
2051
+ - type: map_at_100
2052
+ value: 67.368
2053
+ - type: map_at_1000
2054
+ value: 67.4
2055
+ - type: map_at_3
2056
+ value: 64.061
2057
+ - type: map_at_5
2058
+ value: 65.47
2059
+ - type: mrr_at_1
2060
+ value: 60.667
2061
+ - type: mrr_at_10
2062
+ value: 68.219
2063
+ - type: mrr_at_100
2064
+ value: 68.655
2065
+ - type: mrr_at_1000
2066
+ value: 68.684
2067
+ - type: mrr_at_3
2068
+ value: 66.22200000000001
2069
+ - type: mrr_at_5
2070
+ value: 67.289
2071
+ - type: ndcg_at_1
2072
+ value: 60.667
2073
+ - type: ndcg_at_10
2074
+ value: 71.275
2075
+ - type: ndcg_at_100
2076
+ value: 73.642
2077
+ - type: ndcg_at_1000
2078
+ value: 74.373
2079
+ - type: ndcg_at_3
2080
+ value: 66.521
2081
+ - type: ndcg_at_5
2082
+ value: 68.581
2083
+ - type: precision_at_1
2084
+ value: 60.667
2085
+ - type: precision_at_10
2086
+ value: 9.433
2087
+ - type: precision_at_100
2088
+ value: 1.0699999999999998
2089
+ - type: precision_at_1000
2090
+ value: 0.11299999999999999
2091
+ - type: precision_at_3
2092
+ value: 25.556
2093
+ - type: precision_at_5
2094
+ value: 16.8
2095
+ - type: recall_at_1
2096
+ value: 57.594
2097
+ - type: recall_at_10
2098
+ value: 83.622
2099
+ - type: recall_at_100
2100
+ value: 94.167
2101
+ - type: recall_at_1000
2102
+ value: 99.667
2103
+ - type: recall_at_3
2104
+ value: 70.64399999999999
2105
+ - type: recall_at_5
2106
+ value: 75.983
2107
+ - task:
2108
+ type: PairClassification
2109
+ dataset:
2110
+ name: MTEB SprintDuplicateQuestions
2111
+ type: mteb/sprintduplicatequestions-pairclassification
2112
+ config: default
2113
+ split: test
2114
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2115
+ metrics:
2116
+ - type: cos_sim_accuracy
2117
+ value: 99.85841584158416
2118
+ - type: cos_sim_ap
2119
+ value: 96.66996142314342
2120
+ - type: cos_sim_f1
2121
+ value: 92.83208020050125
2122
+ - type: cos_sim_precision
2123
+ value: 93.06532663316584
2124
+ - type: cos_sim_recall
2125
+ value: 92.60000000000001
2126
+ - type: dot_accuracy
2127
+ value: 99.85841584158416
2128
+ - type: dot_ap
2129
+ value: 96.6775307676576
2130
+ - type: dot_f1
2131
+ value: 92.69289729177312
2132
+ - type: dot_precision
2133
+ value: 94.77533960292581
2134
+ - type: dot_recall
2135
+ value: 90.7
2136
+ - type: euclidean_accuracy
2137
+ value: 99.86138613861387
2138
+ - type: euclidean_ap
2139
+ value: 96.6338454403108
2140
+ - type: euclidean_f1
2141
+ value: 92.92214357937311
2142
+ - type: euclidean_precision
2143
+ value: 93.96728016359918
2144
+ - type: euclidean_recall
2145
+ value: 91.9
2146
+ - type: manhattan_accuracy
2147
+ value: 99.86237623762376
2148
+ - type: manhattan_ap
2149
+ value: 96.60370449645053
2150
+ - type: manhattan_f1
2151
+ value: 92.91177970423253
2152
+ - type: manhattan_precision
2153
+ value: 94.7970863683663
2154
+ - type: manhattan_recall
2155
+ value: 91.10000000000001
2156
+ - type: max_accuracy
2157
+ value: 99.86237623762376
2158
+ - type: max_ap
2159
+ value: 96.6775307676576
2160
+ - type: max_f1
2161
+ value: 92.92214357937311
2162
+ - task:
2163
+ type: Clustering
2164
+ dataset:
2165
+ name: MTEB StackExchangeClustering
2166
+ type: mteb/stackexchange-clustering
2167
+ config: default
2168
+ split: test
2169
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2170
+ metrics:
2171
+ - type: v_measure
2172
+ value: 60.77977058695198
2173
+ - task:
2174
+ type: Clustering
2175
+ dataset:
2176
+ name: MTEB StackExchangeClusteringP2P
2177
+ type: mteb/stackexchange-clustering-p2p
2178
+ config: default
2179
+ split: test
2180
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2181
+ metrics:
2182
+ - type: v_measure
2183
+ value: 35.2725272535638
2184
+ - task:
2185
+ type: Reranking
2186
+ dataset:
2187
+ name: MTEB StackOverflowDupQuestions
2188
+ type: mteb/stackoverflowdupquestions-reranking
2189
+ config: default
2190
+ split: test
2191
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2192
+ metrics:
2193
+ - type: map
2194
+ value: 53.64052466362125
2195
+ - type: mrr
2196
+ value: 54.533067014684654
2197
+ - task:
2198
+ type: Summarization
2199
+ dataset:
2200
+ name: MTEB SummEval
2201
+ type: mteb/summeval
2202
+ config: default
2203
+ split: test
2204
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2205
+ metrics:
2206
+ - type: cos_sim_pearson
2207
+ value: 30.677624219206578
2208
+ - type: cos_sim_spearman
2209
+ value: 30.121368518123447
2210
+ - type: dot_pearson
2211
+ value: 30.69870088041608
2212
+ - type: dot_spearman
2213
+ value: 29.61284927093751
2214
+ - task:
2215
+ type: Retrieval
2216
+ dataset:
2217
+ name: MTEB TRECCOVID
2218
+ type: trec-covid
2219
+ config: default
2220
+ split: test
2221
+ revision: None
2222
+ metrics:
2223
+ - type: map_at_1
2224
+ value: 0.22
2225
+ - type: map_at_10
2226
+ value: 1.855
2227
+ - type: map_at_100
2228
+ value: 9.885
2229
+ - type: map_at_1000
2230
+ value: 23.416999999999998
2231
+ - type: map_at_3
2232
+ value: 0.637
2233
+ - type: map_at_5
2234
+ value: 1.024
2235
+ - type: mrr_at_1
2236
+ value: 88.0
2237
+ - type: mrr_at_10
2238
+ value: 93.067
2239
+ - type: mrr_at_100
2240
+ value: 93.067
2241
+ - type: mrr_at_1000
2242
+ value: 93.067
2243
+ - type: mrr_at_3
2244
+ value: 92.667
2245
+ - type: mrr_at_5
2246
+ value: 93.067
2247
+ - type: ndcg_at_1
2248
+ value: 82.0
2249
+ - type: ndcg_at_10
2250
+ value: 75.899
2251
+ - type: ndcg_at_100
2252
+ value: 55.115
2253
+ - type: ndcg_at_1000
2254
+ value: 48.368
2255
+ - type: ndcg_at_3
2256
+ value: 79.704
2257
+ - type: ndcg_at_5
2258
+ value: 78.39699999999999
2259
+ - type: precision_at_1
2260
+ value: 88.0
2261
+ - type: precision_at_10
2262
+ value: 79.60000000000001
2263
+ - type: precision_at_100
2264
+ value: 56.06
2265
+ - type: precision_at_1000
2266
+ value: 21.206
2267
+ - type: precision_at_3
2268
+ value: 84.667
2269
+ - type: precision_at_5
2270
+ value: 83.2
2271
+ - type: recall_at_1
2272
+ value: 0.22
2273
+ - type: recall_at_10
2274
+ value: 2.078
2275
+ - type: recall_at_100
2276
+ value: 13.297
2277
+ - type: recall_at_1000
2278
+ value: 44.979
2279
+ - type: recall_at_3
2280
+ value: 0.6689999999999999
2281
+ - type: recall_at_5
2282
+ value: 1.106
2283
+ - task:
2284
+ type: Retrieval
2285
+ dataset:
2286
+ name: MTEB Touche2020
2287
+ type: webis-touche2020
2288
+ config: default
2289
+ split: test
2290
+ revision: None
2291
+ metrics:
2292
+ - type: map_at_1
2293
+ value: 2.258
2294
+ - type: map_at_10
2295
+ value: 10.439
2296
+ - type: map_at_100
2297
+ value: 16.89
2298
+ - type: map_at_1000
2299
+ value: 18.407999999999998
2300
+ - type: map_at_3
2301
+ value: 5.668
2302
+ - type: map_at_5
2303
+ value: 7.718
2304
+ - type: mrr_at_1
2305
+ value: 32.653
2306
+ - type: mrr_at_10
2307
+ value: 51.159
2308
+ - type: mrr_at_100
2309
+ value: 51.714000000000006
2310
+ - type: mrr_at_1000
2311
+ value: 51.714000000000006
2312
+ - type: mrr_at_3
2313
+ value: 47.959
2314
+ - type: mrr_at_5
2315
+ value: 50.407999999999994
2316
+ - type: ndcg_at_1
2317
+ value: 29.592000000000002
2318
+ - type: ndcg_at_10
2319
+ value: 26.037
2320
+ - type: ndcg_at_100
2321
+ value: 37.924
2322
+ - type: ndcg_at_1000
2323
+ value: 49.126999999999995
2324
+ - type: ndcg_at_3
2325
+ value: 30.631999999999998
2326
+ - type: ndcg_at_5
2327
+ value: 28.571
2328
+ - type: precision_at_1
2329
+ value: 32.653
2330
+ - type: precision_at_10
2331
+ value: 22.857
2332
+ - type: precision_at_100
2333
+ value: 7.754999999999999
2334
+ - type: precision_at_1000
2335
+ value: 1.529
2336
+ - type: precision_at_3
2337
+ value: 34.014
2338
+ - type: precision_at_5
2339
+ value: 29.796
2340
+ - type: recall_at_1
2341
+ value: 2.258
2342
+ - type: recall_at_10
2343
+ value: 16.554
2344
+ - type: recall_at_100
2345
+ value: 48.439
2346
+ - type: recall_at_1000
2347
+ value: 82.80499999999999
2348
+ - type: recall_at_3
2349
+ value: 7.283
2350
+ - type: recall_at_5
2351
+ value: 10.732
2352
+ - task:
2353
+ type: Classification
2354
+ dataset:
2355
+ name: MTEB ToxicConversationsClassification
2356
+ type: mteb/toxic_conversations_50k
2357
+ config: default
2358
+ split: test
2359
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2360
+ metrics:
2361
+ - type: accuracy
2362
+ value: 69.8858
2363
+ - type: ap
2364
+ value: 13.835684144362109
2365
+ - type: f1
2366
+ value: 53.803351693244586
2367
+ - task:
2368
+ type: Classification
2369
+ dataset:
2370
+ name: MTEB TweetSentimentExtractionClassification
2371
+ type: mteb/tweet_sentiment_extraction
2372
+ config: default
2373
+ split: test
2374
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2375
+ metrics:
2376
+ - type: accuracy
2377
+ value: 60.50650820599886
2378
+ - type: f1
2379
+ value: 60.84357825979259
2380
+ - task:
2381
+ type: Clustering
2382
+ dataset:
2383
+ name: MTEB TwentyNewsgroupsClustering
2384
+ type: mteb/twentynewsgroups-clustering
2385
+ config: default
2386
+ split: test
2387
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2388
+ metrics:
2389
+ - type: v_measure
2390
+ value: 48.52131044852134
2391
+ - task:
2392
+ type: PairClassification
2393
+ dataset:
2394
+ name: MTEB TwitterSemEval2015
2395
+ type: mteb/twittersemeval2015-pairclassification
2396
+ config: default
2397
+ split: test
2398
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2399
+ metrics:
2400
+ - type: cos_sim_accuracy
2401
+ value: 85.59337187816654
2402
+ - type: cos_sim_ap
2403
+ value: 73.23925826533437
2404
+ - type: cos_sim_f1
2405
+ value: 67.34693877551021
2406
+ - type: cos_sim_precision
2407
+ value: 62.40432237730752
2408
+ - type: cos_sim_recall
2409
+ value: 73.13984168865434
2410
+ - type: dot_accuracy
2411
+ value: 85.31322644096085
2412
+ - type: dot_ap
2413
+ value: 72.30723963807422
2414
+ - type: dot_f1
2415
+ value: 66.47051612112296
2416
+ - type: dot_precision
2417
+ value: 62.0792305930845
2418
+ - type: dot_recall
2419
+ value: 71.53034300791556
2420
+ - type: euclidean_accuracy
2421
+ value: 85.61125350181797
2422
+ - type: euclidean_ap
2423
+ value: 73.32843720487845
2424
+ - type: euclidean_f1
2425
+ value: 67.36549633745895
2426
+ - type: euclidean_precision
2427
+ value: 64.60755813953489
2428
+ - type: euclidean_recall
2429
+ value: 70.36939313984169
2430
+ - type: manhattan_accuracy
2431
+ value: 85.63509566668654
2432
+ - type: manhattan_ap
2433
+ value: 73.16658488311325
2434
+ - type: manhattan_f1
2435
+ value: 67.20597386434349
2436
+ - type: manhattan_precision
2437
+ value: 63.60424028268551
2438
+ - type: manhattan_recall
2439
+ value: 71.2401055408971
2440
+ - type: max_accuracy
2441
+ value: 85.63509566668654
2442
+ - type: max_ap
2443
+ value: 73.32843720487845
2444
+ - type: max_f1
2445
+ value: 67.36549633745895
2446
+ - task:
2447
+ type: PairClassification
2448
+ dataset:
2449
+ name: MTEB TwitterURLCorpus
2450
+ type: mteb/twitterurlcorpus-pairclassification
2451
+ config: default
2452
+ split: test
2453
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2454
+ metrics:
2455
+ - type: cos_sim_accuracy
2456
+ value: 88.33779640625606
2457
+ - type: cos_sim_ap
2458
+ value: 84.83868375898157
2459
+ - type: cos_sim_f1
2460
+ value: 77.16506154017773
2461
+ - type: cos_sim_precision
2462
+ value: 74.62064005753327
2463
+ - type: cos_sim_recall
2464
+ value: 79.88912842623961
2465
+ - type: dot_accuracy
2466
+ value: 88.02732176815307
2467
+ - type: dot_ap
2468
+ value: 83.95089283763002
2469
+ - type: dot_f1
2470
+ value: 76.29635101196631
2471
+ - type: dot_precision
2472
+ value: 73.31771720613288
2473
+ - type: dot_recall
2474
+ value: 79.52725592854944
2475
+ - type: euclidean_accuracy
2476
+ value: 88.44452206310397
2477
+ - type: euclidean_ap
2478
+ value: 84.98384576824827
2479
+ - type: euclidean_f1
2480
+ value: 77.29311047696697
2481
+ - type: euclidean_precision
2482
+ value: 74.51232583065381
2483
+ - type: euclidean_recall
2484
+ value: 80.28949799815214
2485
+ - type: manhattan_accuracy
2486
+ value: 88.47362906042613
2487
+ - type: manhattan_ap
2488
+ value: 84.91421462218432
2489
+ - type: manhattan_f1
2490
+ value: 77.05107637204792
2491
+ - type: manhattan_precision
2492
+ value: 74.74484256243214
2493
+ - type: manhattan_recall
2494
+ value: 79.50415768401602
2495
+ - type: max_accuracy
2496
+ value: 88.47362906042613
2497
+ - type: max_ap
2498
+ value: 84.98384576824827
2499
+ - type: max_f1
2500
+ value: 77.29311047696697
2501
+ ---
2502
+
2503
+ # wangjinzzhong/bge-small-en-v1.5-Q4_K_M-GGUF
2504
+ This model was converted to GGUF format from [`BAAI/bge-small-en-v1.5`](https://huggingface.co/BAAI/bge-small-en-v1.5) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2505
+ Refer to the [original model card](https://huggingface.co/BAAI/bge-small-en-v1.5) for more details on the model.
2506
+
2507
+ ## Use with llama.cpp
2508
+ Install llama.cpp through brew (works on Mac and Linux)
2509
+
2510
+ ```bash
2511
+ brew install llama.cpp
2512
+
2513
+ ```
2514
+ Invoke the llama.cpp server or the CLI.
2515
+
2516
+ ### CLI:
2517
+ ```bash
2518
+ llama-cli --hf-repo wangjinzzhong/bge-small-en-v1.5-Q4_K_M-GGUF --hf-file bge-small-en-v1.5-q4_k_m.gguf -p "The meaning to life and the universe is"
2519
+ ```
2520
+
2521
+ ### Server:
2522
+ ```bash
2523
+ llama-server --hf-repo wangjinzzhong/bge-small-en-v1.5-Q4_K_M-GGUF --hf-file bge-small-en-v1.5-q4_k_m.gguf -c 2048
2524
+ ```
2525
+
2526
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2527
+
2528
+ Step 1: Clone llama.cpp from GitHub.
2529
+ ```
2530
+ git clone https://github.com/ggerganov/llama.cpp
2531
+ ```
2532
+
2533
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2534
+ ```
2535
+ cd llama.cpp && LLAMA_CURL=1 make
2536
+ ```
2537
+
2538
+ Step 3: Run inference through the main binary.
2539
+ ```
2540
+ ./llama-cli --hf-repo wangjinzzhong/bge-small-en-v1.5-Q4_K_M-GGUF --hf-file bge-small-en-v1.5-q4_k_m.gguf -p "The meaning to life and the universe is"
2541
+ ```
2542
+ or
2543
+ ```
2544
+ ./llama-server --hf-repo wangjinzzhong/bge-small-en-v1.5-Q4_K_M-GGUF --hf-file bge-small-en-v1.5-q4_k_m.gguf -c 2048
2545
+ ```