--- license: mit --- ## How to run ```python import torch from diffusers import AutoPipelineForText2Image from diffusers.pipelines.wuerstchen import WuerstchenPrior prior_model = WuerstchenPrior.from_pretrained("warp-diffusion/wuerstchen-prior", torch_dtype=torch.float16) pipe = AutoPipelineForText2Image.from_pretrained("warp-diffusion/wuerstchen", prior_prior=prior_model, torch_dtype=torch.float16).to("cuda") prompt = [ "An old destroyed car standing on a cliff in norway, cinematic photography", "Western movie, closeup cinematic photography", "Pink nike shoe commercial, closeup cinematic photography", "Croatia, closeup cinematic photography", "South Tyrol mountains at sunset, closeup cinematic photography", ] images = pipe(prompt, guidance_scale=8.0, width=1024, height=1024).images ```