waterabbit114 commited on
Commit
927b1d9
1 Parent(s): 8d51b4a

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,362 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: is completely right on this. carnildo’s comment is just a waste of space.
12
+ 176.12.107.140
13
+ - text: '" please do not vandalize pages, as you did with this edit to bella swan.
14
+ if you continue to do so, you will be blocked from editing. (talk) "'
15
+ - text: ipv6 mirc doesn't natively supports ipv6 protocols. it could be enabled
16
+ by adding a external dll plugin who will enable a special protocol for dns and
17
+ connecting to ipv6 servers.
18
+ - text: '" link thanks for fixing that disambiguation link on usher''s album )
19
+ flash; "'
20
+ - text: '|b-class-1= yes |b-class-2= yes |b-class-3= yes |b-class-4= yes |b-class-5=
21
+ yes'
22
+ pipeline_tag: text-classification
23
+ inference: true
24
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
25
+ model-index:
26
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
27
+ results:
28
+ - task:
29
+ type: text-classification
30
+ name: Text Classification
31
+ dataset:
32
+ name: Unknown
33
+ type: unknown
34
+ split: test
35
+ metrics:
36
+ - type: accuracy
37
+ value: 0.9220718180109043
38
+ name: Accuracy
39
+ ---
40
+
41
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
42
+
43
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
44
+
45
+ The model has been trained using an efficient few-shot learning technique that involves:
46
+
47
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
48
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
49
+
50
+ ## Model Details
51
+
52
+ ### Model Description
53
+ - **Model Type:** SetFit
54
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
55
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
56
+ - **Maximum Sequence Length:** 512 tokens
57
+ - **Number of Classes:** 2 classes
58
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
65
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
66
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
67
+
68
+ ### Model Labels
69
+ | Label | Examples |
70
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
71
+ | 0 | <ul><li>', metal unless it was 70s oldskool'</li><li>"do whichever you think would be best then: if you rename the account, just let me know, and i'll go over there to recreate it; but if you'd prefer to rename the account, recreate it, and send me the password which i can then change, that's fine with me."</li><li>'" no, it was a far-too-much-of-an-in-joke on the fact that principle→principal is usually one of the first things the fa regulars jump on (along with the dreaded spaced em dash)\xa0–\xa0scent "'</li></ul> |
72
+ | 1 | <ul><li>"hey , you are a chicken shit coward i told you that everytime you had one of your administrator buddies block me, i would quickly be back on with a new ip address editing your vandalism of this article. i meant it!!! why don't you stop masturbating to wikipedia and get a real life? i told you that you don't know who you're fuck with!!!"</li><li>'and you are a motherfucking asshole,suck your dick,you dirty son of a dicks'</li><li>'" you are actually trying to goad me into an arguement. how cute. when you just said on your cute ani post that we are wearing you out with our arguements. as for that diff of your prefer versions, it would be the one before i reverted you...this one. you didn\'t like the comprimise, so you revert it to what you feel is best, not to what was there before. try reading up on wp:own, cause you are trying to own this article and that ain\'t gonna happen. oh, and for someone ""standing by"" their statement that it is good for people to believe ase had a friend that was a murder victim. you sir are a callous asshole (and i stand by that term) and nothing you do will make me believe otherwise. if you can\'t see what you wrote was unthinkably wrong, rude and cold...you don\'t deserve to be on wikipedia, not alone the internet....or this planet. - • talk • "'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 0.9221 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("waterabbit114/my-setfit-classifier_toxic")
98
+ # Run inference
99
+ preds = model("\" link thanks for fixing that disambiguation link on usher's album ) flash; \"")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:-------|:----|
131
+ | Word count | 3 | 98.8 | 898 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0 | 10 |
136
+ | 1 | 10 |
137
+
138
+ ### Training Hyperparameters
139
+ - batch_size: (1, 1)
140
+ - num_epochs: (10, 10)
141
+ - max_steps: -1
142
+ - sampling_strategy: oversampling
143
+ - num_iterations: 20
144
+ - body_learning_rate: (2e-05, 2e-05)
145
+ - head_learning_rate: 2e-05
146
+ - loss: CosineSimilarityLoss
147
+ - distance_metric: cosine_distance
148
+ - margin: 0.25
149
+ - end_to_end: False
150
+ - use_amp: False
151
+ - warmup_proportion: 0.1
152
+ - seed: 42
153
+ - eval_max_steps: -1
154
+ - load_best_model_at_end: False
155
+
156
+ ### Training Results
157
+ | Epoch | Step | Training Loss | Validation Loss |
158
+ |:------:|:----:|:-------------:|:---------------:|
159
+ | 0.0013 | 1 | 0.0656 | - |
160
+ | 0.0625 | 50 | 0.0046 | - |
161
+ | 0.125 | 100 | 0.0018 | - |
162
+ | 0.1875 | 150 | 0.0003 | - |
163
+ | 0.25 | 200 | 0.0062 | - |
164
+ | 0.3125 | 250 | 0.0011 | - |
165
+ | 0.375 | 300 | 0.0009 | - |
166
+ | 0.4375 | 350 | 0.0 | - |
167
+ | 0.5 | 400 | 0.0008 | - |
168
+ | 0.5625 | 450 | 0.0001 | - |
169
+ | 0.625 | 500 | 0.0002 | - |
170
+ | 0.6875 | 550 | 0.0 | - |
171
+ | 0.75 | 600 | 0.0 | - |
172
+ | 0.8125 | 650 | 0.0002 | - |
173
+ | 0.875 | 700 | 0.0001 | - |
174
+ | 0.9375 | 750 | 0.0001 | - |
175
+ | 1.0 | 800 | 0.0002 | - |
176
+ | 1.0625 | 850 | 0.0002 | - |
177
+ | 1.125 | 900 | 0.0001 | - |
178
+ | 1.1875 | 950 | 0.0001 | - |
179
+ | 1.25 | 1000 | 0.0003 | - |
180
+ | 1.3125 | 1050 | 0.0001 | - |
181
+ | 1.375 | 1100 | 0.0001 | - |
182
+ | 1.4375 | 1150 | 0.0002 | - |
183
+ | 1.5 | 1200 | 0.0001 | - |
184
+ | 1.5625 | 1250 | 0.0005 | - |
185
+ | 1.625 | 1300 | 0.0001 | - |
186
+ | 1.6875 | 1350 | 0.0 | - |
187
+ | 1.75 | 1400 | 0.0001 | - |
188
+ | 1.8125 | 1450 | 0.0001 | - |
189
+ | 1.875 | 1500 | 0.0001 | - |
190
+ | 1.9375 | 1550 | 0.0001 | - |
191
+ | 2.0 | 1600 | 0.0 | - |
192
+ | 2.0625 | 1650 | 0.0 | - |
193
+ | 2.125 | 1700 | 0.0003 | - |
194
+ | 2.1875 | 1750 | 0.0 | - |
195
+ | 2.25 | 1800 | 0.0004 | - |
196
+ | 2.3125 | 1850 | 0.0004 | - |
197
+ | 2.375 | 1900 | 0.0 | - |
198
+ | 2.4375 | 1950 | 0.0 | - |
199
+ | 2.5 | 2000 | 0.0 | - |
200
+ | 2.5625 | 2050 | 0.0 | - |
201
+ | 2.625 | 2100 | 0.0003 | - |
202
+ | 2.6875 | 2150 | 0.0 | - |
203
+ | 2.75 | 2200 | 0.0001 | - |
204
+ | 2.8125 | 2250 | 0.0 | - |
205
+ | 2.875 | 2300 | 0.0 | - |
206
+ | 2.9375 | 2350 | 0.0001 | - |
207
+ | 3.0 | 2400 | 0.0 | - |
208
+ | 3.0625 | 2450 | 0.0 | - |
209
+ | 3.125 | 2500 | 0.0002 | - |
210
+ | 3.1875 | 2550 | 0.0 | - |
211
+ | 3.25 | 2600 | 0.0001 | - |
212
+ | 3.3125 | 2650 | 0.0 | - |
213
+ | 3.375 | 2700 | 0.0 | - |
214
+ | 3.4375 | 2750 | 0.0001 | - |
215
+ | 3.5 | 2800 | 0.0 | - |
216
+ | 3.5625 | 2850 | 0.0 | - |
217
+ | 3.625 | 2900 | 0.0001 | - |
218
+ | 3.6875 | 2950 | 0.0 | - |
219
+ | 3.75 | 3000 | 0.0 | - |
220
+ | 3.8125 | 3050 | 0.0 | - |
221
+ | 3.875 | 3100 | 0.0 | - |
222
+ | 3.9375 | 3150 | 0.0 | - |
223
+ | 4.0 | 3200 | 0.0 | - |
224
+ | 4.0625 | 3250 | 0.0001 | - |
225
+ | 4.125 | 3300 | 0.0 | - |
226
+ | 4.1875 | 3350 | 0.0 | - |
227
+ | 4.25 | 3400 | 0.0 | - |
228
+ | 4.3125 | 3450 | 0.0 | - |
229
+ | 4.375 | 3500 | 0.0 | - |
230
+ | 4.4375 | 3550 | 0.0 | - |
231
+ | 4.5 | 3600 | 0.0 | - |
232
+ | 4.5625 | 3650 | 0.0 | - |
233
+ | 4.625 | 3700 | 0.0002 | - |
234
+ | 4.6875 | 3750 | 0.0 | - |
235
+ | 4.75 | 3800 | 0.0 | - |
236
+ | 4.8125 | 3850 | 0.0 | - |
237
+ | 4.875 | 3900 | 0.0 | - |
238
+ | 4.9375 | 3950 | 0.0 | - |
239
+ | 5.0 | 4000 | 0.0001 | - |
240
+ | 5.0625 | 4050 | 0.0 | - |
241
+ | 5.125 | 4100 | 0.0 | - |
242
+ | 5.1875 | 4150 | 0.0 | - |
243
+ | 5.25 | 4200 | 0.0 | - |
244
+ | 5.3125 | 4250 | 0.0 | - |
245
+ | 5.375 | 4300 | 0.0 | - |
246
+ | 5.4375 | 4350 | 0.0 | - |
247
+ | 5.5 | 4400 | 0.0 | - |
248
+ | 5.5625 | 4450 | 0.0 | - |
249
+ | 5.625 | 4500 | 0.0 | - |
250
+ | 5.6875 | 4550 | 0.0 | - |
251
+ | 5.75 | 4600 | 0.0 | - |
252
+ | 5.8125 | 4650 | 0.0 | - |
253
+ | 5.875 | 4700 | 0.0 | - |
254
+ | 5.9375 | 4750 | 0.0 | - |
255
+ | 6.0 | 4800 | 0.0001 | - |
256
+ | 6.0625 | 4850 | 0.0 | - |
257
+ | 6.125 | 4900 | 0.0003 | - |
258
+ | 6.1875 | 4950 | 0.0002 | - |
259
+ | 6.25 | 5000 | 0.0 | - |
260
+ | 6.3125 | 5050 | 0.0 | - |
261
+ | 6.375 | 5100 | 0.0 | - |
262
+ | 6.4375 | 5150 | 0.0001 | - |
263
+ | 6.5 | 5200 | 0.0 | - |
264
+ | 6.5625 | 5250 | 0.0 | - |
265
+ | 6.625 | 5300 | 0.0 | - |
266
+ | 6.6875 | 5350 | 0.0001 | - |
267
+ | 6.75 | 5400 | 0.0001 | - |
268
+ | 6.8125 | 5450 | 0.0 | - |
269
+ | 6.875 | 5500 | 0.0 | - |
270
+ | 6.9375 | 5550 | 0.0 | - |
271
+ | 7.0 | 5600 | 0.0 | - |
272
+ | 7.0625 | 5650 | 0.0 | - |
273
+ | 7.125 | 5700 | 0.0 | - |
274
+ | 7.1875 | 5750 | 0.0 | - |
275
+ | 7.25 | 5800 | 0.0 | - |
276
+ | 7.3125 | 5850 | 0.0 | - |
277
+ | 7.375 | 5900 | 0.0 | - |
278
+ | 7.4375 | 5950 | 0.0 | - |
279
+ | 7.5 | 6000 | 0.0 | - |
280
+ | 7.5625 | 6050 | 0.0 | - |
281
+ | 7.625 | 6100 | 0.0 | - |
282
+ | 7.6875 | 6150 | 0.0 | - |
283
+ | 7.75 | 6200 | 0.0001 | - |
284
+ | 7.8125 | 6250 | 0.0 | - |
285
+ | 7.875 | 6300 | 0.0 | - |
286
+ | 7.9375 | 6350 | 0.0001 | - |
287
+ | 8.0 | 6400 | 0.0 | - |
288
+ | 8.0625 | 6450 | 0.0 | - |
289
+ | 8.125 | 6500 | 0.0 | - |
290
+ | 8.1875 | 6550 | 0.0 | - |
291
+ | 8.25 | 6600 | 0.0 | - |
292
+ | 8.3125 | 6650 | 0.0 | - |
293
+ | 8.375 | 6700 | 0.0 | - |
294
+ | 8.4375 | 6750 | 0.0 | - |
295
+ | 8.5 | 6800 | 0.0 | - |
296
+ | 8.5625 | 6850 | 0.0 | - |
297
+ | 8.625 | 6900 | 0.0001 | - |
298
+ | 8.6875 | 6950 | 0.0 | - |
299
+ | 8.75 | 7000 | 0.0 | - |
300
+ | 8.8125 | 7050 | 0.0 | - |
301
+ | 8.875 | 7100 | 0.0 | - |
302
+ | 8.9375 | 7150 | 0.0 | - |
303
+ | 9.0 | 7200 | 0.0 | - |
304
+ | 9.0625 | 7250 | 0.0 | - |
305
+ | 9.125 | 7300 | 0.0 | - |
306
+ | 9.1875 | 7350 | 0.0 | - |
307
+ | 9.25 | 7400 | 0.0 | - |
308
+ | 9.3125 | 7450 | 0.0 | - |
309
+ | 9.375 | 7500 | 0.0 | - |
310
+ | 9.4375 | 7550 | 0.0 | - |
311
+ | 9.5 | 7600 | 0.0 | - |
312
+ | 9.5625 | 7650 | 0.0 | - |
313
+ | 9.625 | 7700 | 0.0 | - |
314
+ | 9.6875 | 7750 | 0.0 | - |
315
+ | 9.75 | 7800 | 0.0 | - |
316
+ | 9.8125 | 7850 | 0.0 | - |
317
+ | 9.875 | 7900 | 0.0 | - |
318
+ | 9.9375 | 7950 | 0.0 | - |
319
+ | 10.0 | 8000 | 0.0 | - |
320
+
321
+ ### Framework Versions
322
+ - Python: 3.11.7
323
+ - SetFit: 1.0.3
324
+ - Sentence Transformers: 2.2.2
325
+ - Transformers: 4.35.2
326
+ - PyTorch: 2.1.1+cu121
327
+ - Datasets: 2.14.5
328
+ - Tokenizers: 0.15.1
329
+
330
+ ## Citation
331
+
332
+ ### BibTeX
333
+ ```bibtex
334
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
335
+ doi = {10.48550/ARXIV.2209.11055},
336
+ url = {https://arxiv.org/abs/2209.11055},
337
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
338
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
339
+ title = {Efficient Few-Shot Learning Without Prompts},
340
+ publisher = {arXiv},
341
+ year = {2022},
342
+ copyright = {Creative Commons Attribution 4.0 International}
343
+ }
344
+ ```
345
+
346
+ <!--
347
+ ## Glossary
348
+
349
+ *Clearly define terms in order to be accessible across audiences.*
350
+ -->
351
+
352
+ <!--
353
+ ## Model Card Authors
354
+
355
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
356
+ -->
357
+
358
+ <!--
359
+ ## Model Card Contact
360
+
361
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
362
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4683615770b046f56d4be8f1f40be6937ba796520cc33dd103cc29f4859787ac
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63aca8a9abe2194d73ea4317de1d3c07f3abd387637246cc0c1df5c570d0739e
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff