--- base_model: google/gemma-2-9b library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: root/data/finetuned_models/gemma2-9b-hansard-llama-format results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: google/gemma-2-9b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: /root/data/input_data/hansard/reply_by_hyd_llama3_formatted_train.jsonl type: completion field: input # dataset_prepared_path: /root/data/prepared_datasets/hansard_gemma2_alpaca # val_set_size: 0.1 output_dir: /root/data/finetuned_models/gemma2-9b-hansard-llama-format sequence_len: 2500 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# root/data/finetuned_models/gemma2-9b-hansard-llama-format This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 178 - num_epochs: 4 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1