File size: 3,406 Bytes
f6947e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: NousResearch/Meta-Llama-3-70B
model-index:
- name: 2-qlora-out-l3-10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: NousResearch/Meta-Llama-3-70B
model_type: LlamaForCausalLM
tokenizer_type: PreTrainedTokenizerFast

#overrides_of_model_config:
#  rope_scaling:
#    type: linear
#    factor: 4

special_tokens:
  pad_token: "<|end_of_text|>"

gptq: false
gptq_disable_exllama: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: /workspace/axolotl/output.jsonl
    ds_type: json
    type: completion
    data_files:
      - /workspace/axolotl/output.jsonl

output_dir: ./2-qlora-out-l3-10

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 90
lora_dropout: 0.10
lora_target_linear: true
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
peft_use_dora: true

wandb_project: kalomaze-model
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
# optimizer: paged_adamw_8bit
# optimizer: adamw_bnb_8bit
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000015
cosine_min_lr_ratio: 0.2
max_grad_norm: 1.0

train_on_inputs: true
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 0
saves_per_epoch: 2
save_total_limit: 7
debug:
weight_decay: 0.0
# fsdp:
#   - full_shard
#   - auto_wrap
# fsdp_config:
#   fsdp_limit_all_gathers: true
#   fsdp_sync_module_states: true
#   fsdp_offload_params: false
#   fsdp_use_orig_params: false
#   fsdp_cpu_ram_efficient_loading: false
#   fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#   fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
#   fsdp_state_dict_type: FULL_STATE_DICT

seed: 246
```

</details><br>

# 2-qlora-out-l3-10

This model is a fine-tuned version of [NousResearch/Meta-Llama-3-70B](https://huggingface.co/NousResearch/Meta-Llama-3-70B) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 246
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 4

### Training results



### Framework versions

- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.2.1
- Datasets 2.15.0
- Tokenizers 0.15.0