wdika commited on
Commit
df5e7e3
1 Parent(s): e9e56e5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - StanfordKnees2019
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - UNet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_UNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ UNet for 12x accelerated MRI Reconstruction on the StanfordKnees2019 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf).
38
+
39
+
40
+ ### Automatically instantiate the model
41
+
42
+ ```base
43
+ pretrained: true
44
+ checkpoint: https://huggingface.co/wdika/REC_UNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM/blob/main/REC_UNet_StanfordKnees2019_gaussian2d_12x_AutoEstimationCSM.atommic
45
+ mode: test
46
+ ```
47
+
48
+ ### Usage
49
+
50
+ You need to download the Stanford Knees 2019 dataset to effectively use this model. Check the [StanfordKnees2019](https://github.com/wdika/atommic/blob/main/projects/REC/StanfordKnees2019/README.md) page for more information.
51
+
52
+
53
+ ## Model Architecture
54
+ ```base
55
+ model:
56
+ model_name: UNet
57
+ channels: 64
58
+ pooling_layers: 4
59
+ in_channels: 2
60
+ out_channels: 2
61
+ padding_size: 11
62
+ dropout: 0.0
63
+ normalize: true
64
+ norm_groups: 2
65
+ dimensionality: 2
66
+ reconstruction_loss:
67
+ wasserstein: 1.0
68
+ ```
69
+
70
+ ## Training
71
+ ```base
72
+ optim:
73
+ name: adamw
74
+ lr: 1e-4
75
+ betas:
76
+ - 0.9
77
+ - 0.999
78
+ weight_decay: 0.0
79
+ sched:
80
+ name: InverseSquareRootAnnealing
81
+ min_lr: 0.0
82
+ last_epoch: -1
83
+ warmup_ratio: 0.1
84
+
85
+ trainer:
86
+ strategy: ddp_find_unused_parameters_false
87
+ accelerator: gpu
88
+ devices: 1
89
+ num_nodes: 1
90
+ max_epochs: 20
91
+ precision: 16-mixed
92
+ enable_checkpointing: false
93
+ logger: false
94
+ log_every_n_steps: 50
95
+ check_val_every_n_epoch: -1
96
+ max_steps: -1
97
+ ```
98
+
99
+ ## Performance
100
+
101
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/StanfordKnees2019/conf/targets) configuration files.
102
+
103
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
104
+
105
+ Results
106
+ -------
107
+
108
+ Evaluation against SENSE targets
109
+ --------------------------------
110
+ 12x: MSE = 0.001251 +/- 0.005686 NMSE = 0.04254 +/- 0.09148 PSNR = 31.4 +/- 6.554 SSIM = 0.7705 +/- 0.2946
111
+
112
+
113
+ ## Limitations
114
+
115
+ This model was trained on the StanfordKnees2019 batch0 using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
116
+
117
+
118
+ ## References
119
+
120
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
121
+
122
+ [2] Epperson K, Rt R, Sawyer AM, et al. Creation of Fully Sampled MR Data Repository for Compressed SENSEing of the Knee. SMRT Conference 2013;2013:1