dahara1 commited on
Commit
ffa99bc
1 Parent(s): f5c7e31

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -0
README.md ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - ja
5
+ - en
6
+ - de
7
+ - is
8
+ - zh
9
+ - cs
10
+ ---
11
+ # webbigdata/ALMA-7B-Ja-V2
12
+
13
+ ALMA-7B-Ja-V2は日本語から英語、英語から日本語の翻訳が可能な機械翻訳モデルです。
14
+ The ALMA-7B-Ja-V2 is a machine translation model capable of translating from Japanese to English and English to Japanese.
15
+
16
+ ALMA-7B-Ja-V2は以前のモデル(ALMA-7B-Ja)に更に学習を追加し、性能を向上しています。
17
+ The ALMA-7B-Ja-V2 adds further learning to the previous model (ALMA-7B-Ja) and improves performance.
18
+
19
+ 日本語と英語間に加えて、このモデルは以下の言語間の翻訳能力も持っています。
20
+ In addition to translation between Japanese and English, the model also has the ability to translate the following four languages.
21
+
22
+ - ドイツ語 German(de) and 英語 English(en)
23
+ - 中国語 Chinese(zh) and 英語 English(en)
24
+ - アイスランド語 Icelandic(is) and 英語 English(en)
25
+ - チェコ語 Czech(cs) and 英語 English(en)
26
+
27
+ # ベンチマーク結果
28
+
29
+ Meta社の200言語以上の翻訳に対応した超多言語対応機械翻訳モデルNLLB-200シリーズと比較したベンチマーク結果は以下です。
30
+ Benchmark results compared to Meta's NLLB-200 series of super multilingual machine translation models, which support translations in over 200 languages, are shown below.
31
+
32
+ | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
33
+ |------------------------------|-----------|--------------|----------|--------------|-----------|
34
+ | NLLB-200-Distilled | 2.46GB | 23.6/- | - | 50.2/- | - |
35
+ | NLLB-200-Distilled | 5.48GB | 25.4/- | - | 54.2/- | - |
36
+ | NLLB-200 | 5.48GB | 24.2/- | - | 53.6/- | - |
37
+ | NLLB-200 | 17.58GB | 25.2/- | - | 55.1/- | - |
38
+ | NLLB-200 | 220.18GB | 27.9/33.2 | 0.8908 | 55.8/59.8 | 0.8792 |
39
+
40
+ previous our model(ALMA-7B-Ja)
41
+ | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet |
42
+ | webbigdata-ALMA-7B-Ja-q4_K_S | 3.6GB | -/24.2 | 0.8210 | -/54.2 | 0.8559 |
43
+ | ALMA-7B-Ja-GPTQ-Ja-En | 3.9GB | -/30.8 | 0.8743 | -/60.9 | 0.8743 |
44
+ | ALMA-Ja(Ours) | 13.48GB | -/31.8 | 0.8811 | -/61.6 | 0.8773 |
45
+
46
+ ALMA-7B-Ja-V2
47
+ | ALMA-7B-Ja-V2-GPTQ-Ja-En | 3.9GB | -/33.0 | 0.8818 | -/62.0 | 0.8774 |
48
+ | ALMA-Ja-V2(Ours) | 13.48GB | -/33.9 | 0.8820 | -/63.1 | 0.8873 |
49
+ | ALMA-Ja-V2-Lora(Ours) | 13.48GB | -/33.7 | 0.8843 | -/61.1 | 0.8775 |
50
+
51
+
52
+ 様々なジャンルの文章を実際のアプリケーションと比較した結果は以下です。
53
+ Here are the results of a comparison of various genres of writing with the actual application.
54
+
55
+ 政府の公式文章 Government Official Announcements
56
+ | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
57
+ |--------------------------|------------|---------|----------|------------|---------|----------|
58
+ | ALMA-7B-Ja-V2-GPTQ-Ja-En | 25.3 | 15.00 | 0.8848 | 60.3 | 26.82 | 0.6189 |
59
+ | ALMA-Ja-V2 | 27.2 | 15.60 | 0.8868 | 58.5 | 29.27 | 0.6155 |
60
+ | ALMA-7B-Ja-V2-Lora | 24.5 | 13.58 | 0.8670 | 50.7 | 21.85 | 0.6196 |
61
+ | gpt-3.5 | 34.6 | 28.33 | 0.8895 | 74.5 | 49.20 | 0.6382 |
62
+ | gpt-4.0 | 36.5 | 28.07 | 0.9255 | 62.5 | 33.63 | 0.6320 |
63
+ | google-translate | 43.5 | 35.37 | 0.9181 | 62.7 | 29.22 | 0.6446 |
64
+ | deepl | 43.5 | 35.74 | 0.9301 | 60.1 | 27.40 | 0.6389 |
65
+
66
+ 二次創作 Fanfiction
67
+ | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet|
68
+ |--------------------------|------------|---------|----------|------------|---------|----------|
69
+ | ALMA-7B-Ja-V2-GPTQ-Ja-En | 27.6 | 18.28 | 0.8643 | 52.1 | 24.58 | 0.6106 |
70
+ | ALMA-Ja-V2 | 20.4 | 8.45 | 0.7870 | 48.7 | 23.06 | 0.6050 |
71
+ | ALMA-7B-Ja-V2-Lora | 23.9 | 18.55 | 0.8634 | 55.6 | 29.91 | 0.6093 |
72
+ | gpt-3.5 | 31.2 | 23.37 | 0.9001 | - | - | 0.5948 |
73
+ | gpt-4.0 | 30.7 | 24.31 | 0.8848 | 53.9 | 24.89 | 0.6163 |
74
+ | google-translate | 32.4 | 25.36 | 0.8968 | 58.5 | 29.88 | 0.6022 |
75
+ | deepl | 33.5 | 28.38 | 0.9094 | 60.0 | 31.14 | 0.6124 |
76
+
77
+
78
+ [Sample Code For Free Colab](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_Free_Colab_sample.ipynb)
79
+
80
+
81
+
82
+ ## Other Version
83
+
84
+ ### ALMA-7B-Ja-V2^GPTQ-Ja-En
85
+ GPTQ is quantized(reduce the size of the model) method and ALMA-7B-Ja-V2-GPTQ has GPTQ quantized version that reduces model size(3.9GB) and memory usage.
86
+ But the performance is probably lower. And translation ability for languages other than Japanese and English has deteriorated significantly.
87
+
88
+ [Sample Code For Free Colab webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En](https://huggingface.co/webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En)
89
+
90
+ If you want to translate the entire file at once, try Colab below.
91
+ [ALMA_7B_Ja_GPTQ_Ja_En_batch_translation_sample](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_GPTQ_Ja_En_batch_translation_sample.ipynb)
92
+
93
+
94
+
95
+ **ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
96
+ Please find more details in their [paper](https://arxiv.org/abs/2309.11674).
97
+ ```
98
+ @misc{xu2023paradigm,
99
+ title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models},
100
+ author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla},
101
+ year={2023},
102
+ eprint={2309.11674},
103
+ archivePrefix={arXiv},
104
+ primaryClass={cs.CL}
105
+ }
106
+ ```
107
+
108
+
109
+ Original Model [ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B). (26.95GB)
110
+ Prevous Model [ALMA-7B-Ja](https://huggingface.co/webbigdata/ALMA-7B-Ja). (13.3 GB)
111
+
112
+
113
+
114
+ ## about this work
115
+ - **This work was done by :** [webbigdata](https://webbigdata.jp/).