--- inference: false language: - ja - en - de - is - zh - cs --- # webbigdata/ALMA-7B-Ja-V2 ALMA-7B-Ja-V2は日本語から英語、英語から日本語の翻訳が可能な機械翻訳モデルです。 The ALMA-7B-Ja-V2 is a machine translation model capable of translating from Japanese to English and English to Japanese. ALMA-7B-Ja-V2は以前のモデル(ALMA-7B-Ja)に更に学習を追加し、性能を向上しています。 The ALMA-7B-Ja-V2 adds further learning to the previous model (ALMA-7B-Ja) and improves performance. 日本語と英語間に加えて、このモデルは以下の言語間の翻訳能力も持っています。 In addition to translation between Japanese and English, the model also has the ability to translate the following four languages. - ドイツ語 German(de) and 英語 English(en) - 中国語 Chinese(zh) and 英語 English(en) - アイスランド語 Icelandic(is) and 英語 English(en) - チェコ語 Czech(cs) and 英語 English(en) # ベンチマーク結果 以下の三種の指標を使って翻訳性能を確認しました。 The following three metrics were used to check translation performance. 数字は多いほど性能が良い事を表します。 The higher the number, the better the performance. ## BLEU 翻訳テキストが元のテキストにどれだけ似ているかを評価する指標。しかし、単語の出現頻度だけを見ているため、語順の正確さや文の流暢さを十分に評価できないという弱点があります A metric that evaluates how similar the translated text is to the original text. However, since it mainly looks at the frequency of word appearances, it may not effectively evaluate the accuracy of word order or the fluency of sentences. ### chrF++ 文字の組み合わせの一致度と語順に基づいて、翻訳の正確さを評価する方法。弱点としては、長い文の評価には不向きであることが挙げられます。 A method to evaluate translation accuracy based on how well character combinations match and the order of words. A drawback is that it might not be suitable for evaluating longer sentences. ### comet 機械学習モデルを使って翻訳の品質を自動的に評価するためのツール。機械学習ベースであるため、元々のモデルが学習に使ったデータに大きく依存するという弱点があります。 A tool where a computer automatically assesses the quality of a translation. Being machine learning-based, it has the drawback of being heavily dependent on the training data it was provided. ## vs. NLLB-200 Meta社の200言語以上の翻訳に対応した超多言語対応機械翻訳モデルNLLB-200シリーズと比較したベンチマーク結果は以下です。 Benchmark results compared to Meta's NLLB-200 series of super multilingual machine translation models, which support translations in over 200 languages, are shown below. | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet | |------------------------------|-----------|--------------|----------|--------------|-----------| | NLLB-200-Distilled | 2.46GB | 23.6/- | - | 50.2/- | - | | NLLB-200-Distilled | 5.48GB | 25.4/- | - | 54.2/- | - | | NLLB-200 | 5.48GB | 24.2/- | - | 53.6/- | - | | NLLB-200 | 17.58GB | 25.2/- | - | 55.1/- | - | | NLLB-200 | 220.18GB | 27.9/33.2 | 0.8908 | 55.8/59.8 | 0.8792 | ## previous our model(ALMA-7B-Ja) | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet | |------------------------------|-----------|--------------|----------|--------------|-----------| | webbigdata-ALMA-7B-Ja-q4_K_S | 3.6GB | -/24.2 | 0.8210 | -/54.2 | 0.8559 | | ALMA-7B-Ja-GPTQ-Ja-En | 3.9GB | -/30.8 | 0.8743 | -/60.9 | 0.8743 | | ALMA-Ja(Ours) | 13.48GB | -/31.8 | 0.8811 | -/61.6 | 0.8773 | ## ALMA-7B-Ja-V2 | Model Name | file size |E->J chrf++/F2|E->J comet|J->E chrf++/F2|J->E comet | |------------------------------|-----------|--------------|----------|--------------|-----------| | ALMA-7B-Ja-V2-GPTQ-Ja-En | 3.9GB | -/33.0 | 0.8818 | -/62.0 | 0.8774 | | ALMA-Ja-V2(Ours) | 13.48GB | -/33.9 | 0.8820 | -/63.1 | 0.8873 | | ALMA-Ja-V2-Lora(Ours) | 13.48GB | -/33.7 | 0.8843 | -/61.1 | 0.8775 | ALMA-7B-Ja-V2を様々なジャンルの文章を現実世界のアプリケーションと比較した結果は以下です。 Here are the results of a comparison of various genres of writing with the actual application. ## 政府の公式文章 Government Official Announcements | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet| |--------------------------|------------|---------|----------|------------|---------|----------| | ALMA-7B-Ja-V2-GPTQ-Ja-En | 25.3 | 15.00 | 0.8848 | 60.3 | 26.82 | 0.6189 | | ALMA-Ja-V2 | 27.2 | 15.60 | 0.8868 | 58.5 | 29.27 | 0.6155 | | ALMA-7B-Ja-V2-Lora | 24.5 | 13.58 | 0.8670 | 50.7 | 21.85 | 0.6196 | | gpt-3.5 | 34.6 | 28.33 | 0.8895 | 74.5 | 49.20 | 0.6382 | | gpt-4.0 | 36.5 | 28.07 | 0.9255 | 62.5 | 33.63 | 0.6320 | | google-translate | 43.5 | 35.37 | 0.9181 | 62.7 | 29.22 | 0.6446 | | deepl | 43.5 | 35.74 | 0.9301 | 60.1 | 27.40 | 0.6389 | ## 古典文学 Classical Literature | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet| |--------------------------|------------|---------|----------|------------|---------|----------| | ALMA-7B-Ja-V2-GPTQ-Ja-En | 11.8 | 7.24 | 0.6943 | 31.9 | 9.71 | 0.5617 | | ALMA-Ja-V2 | 10.7 | 4.93 | 0.7202 | 32.9 | 10.52 | 0.5638 | | ALMA-7B-Ja-V2-Lora | 12.3 | 7.25 | 0.7076 | 32.5 | 11.14 | 0.5441 | | gpt-3.5 | - | - | 0.6367 | 69.3 | 46.34 | 0.4922 | | gpt-4.0 | 13.3 | 8.33 | 0.7074 | 44.3 | 23.75 | 0.5518 | | deepl | 14.4 | 9.18 | 0.7149 | 34.6 | 10.68 | 0.5787 | | google-translate | 13.5 | 8.57 | 0.7432 | 31.7 | 7.94 | 0.5856 | ## 二次創作 Fanfiction | |e->j chrF2++|e->j BLEU|e->j comet|j->e chrF2++|j->e BLEU|j->e comet| |--------------------------|------------|---------|----------|------------|---------|----------| | ALMA-7B-Ja-V2-GPTQ-Ja-En | 27.6 | 18.28 | 0.8643 | 52.1 | 24.58 | 0.6106 | | ALMA-Ja-V2 | 20.4 | 8.45 | 0.7870 | 48.7 | 23.06 | 0.6050 | | ALMA-7B-Ja-V2-Lora | 23.9 | 18.55 | 0.8634 | 55.6 | 29.91 | 0.6093 | | gpt-3.5 | 31.2 | 23.37 | 0.9001 | - | - | 0.5948 | | gpt-4.0 | 30.7 | 24.31 | 0.8848 | 53.9 | 24.89 | 0.6163 | | google-translate | 32.4 | 25.36 | 0.8968 | 58.5 | 29.88 | 0.6022 | | deepl | 33.5 | 28.38 | 0.9094 | 60.0 | 31.14 | 0.6124 | [Sample Code For Free Colab](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_Free_Colab_sample.ipynb) ## Other Version ### ALMA-7B-Ja-V2-GPTQ-Ja-En GPTQ is quantized(reduce the size of the model) method and ALMA-7B-Ja-V2-GPTQ has GPTQ quantized version that reduces model size(3.9GB) and memory usage. But the performance is probably lower. And translation ability for languages other than Japanese and English has deteriorated significantly. [Sample Code For Free Colab webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En](https://github.com/webbigdata-jp/ALMA/blob/master/ALMA_7B_Ja_V2_GPTQ_Ja_En_Free_Colab_sample.ipynb) If you want to translate the entire file at once, try Colab below. [ALMA_7B_Ja_GPTQ_Ja_En_batch_translation_sample](https://github.com/webbigdata-jp/ALMA/blob/master/ALMA_7B_Ja_V2_GPTQ_Ja_En_batch_translation_sample.ipynb) **ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance. Please find more details in their [paper](https://arxiv.org/abs/2309.11674). ``` @misc{xu2023paradigm, title={A Paradigm Shift in Machine Translation: Boosting Translation Performance of Large Language Models}, author={Haoran Xu and Young Jin Kim and Amr Sharaf and Hany Hassan Awadalla}, year={2023}, eprint={2309.11674}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` Original Model [ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B). (26.95GB) Prevous Model [ALMA-7B-Ja](https://huggingface.co/webbigdata/ALMA-7B-Ja). (13.3 GB) ## about this work - **This work was done by :** [webbigdata](https://webbigdata.jp/).