File size: 2,649 Bytes
452c427
 
 
 
 
 
b692cab
452c427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-finetuned-wikiandmark_epoch20
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-wikiandmark_epoch20

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0561
- Accuracy: 0.9944

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0224        | 1.0   | 1859  | 0.0277          | 0.9919   |
| 0.0103        | 2.0   | 3718  | 0.0298          | 0.9925   |
| 0.0047        | 3.0   | 5577  | 0.0429          | 0.9924   |
| 0.0038        | 4.0   | 7436  | 0.0569          | 0.9922   |
| 0.0019        | 5.0   | 9295  | 0.0554          | 0.9936   |
| 0.0028        | 6.0   | 11154 | 0.0575          | 0.9928   |
| 0.002         | 7.0   | 13013 | 0.0544          | 0.9926   |
| 0.0017        | 8.0   | 14872 | 0.0553          | 0.9935   |
| 0.001         | 9.0   | 16731 | 0.0498          | 0.9924   |
| 0.0001        | 10.0  | 18590 | 0.0398          | 0.9934   |
| 0.0           | 11.0  | 20449 | 0.0617          | 0.9935   |
| 0.0002        | 12.0  | 22308 | 0.0561          | 0.9944   |
| 0.0002        | 13.0  | 24167 | 0.0755          | 0.9934   |
| 0.0           | 14.0  | 26026 | 0.0592          | 0.9941   |
| 0.0           | 15.0  | 27885 | 0.0572          | 0.9939   |
| 0.0           | 16.0  | 29744 | 0.0563          | 0.9941   |
| 0.0           | 17.0  | 31603 | 0.0587          | 0.9936   |
| 0.0005        | 18.0  | 33462 | 0.0673          | 0.9937   |
| 0.0           | 19.0  | 35321 | 0.0651          | 0.9933   |
| 0.0           | 20.0  | 37180 | 0.0683          | 0.9936   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1