weqweasdas commited on
Commit
4750941
1 Parent(s): abf8131

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -158
README.md CHANGED
@@ -1,201 +1,112 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
 
 
 
 
 
126
 
127
- ### Results
128
 
129
- [More Information Needed]
 
 
 
 
 
130
 
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
 
198
 
199
- [More Information Needed]
200
 
201
 
 
1
  ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
  ---
6
 
7
+ # Reward Model Overview
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ The reward model is trained from the base model [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it).
12
 
13
  ## Model Details
14
 
15
+ If you have any question with this reward model and also any question about reward modeling, feel free to drop me an email with wx13@illinois.edu. I would be happy to chat!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ ### Dataset preprocessing
18
 
19
+ <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ The model is trained on a mixture of
22
 
23
+ - [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf)
24
+ - [SHP](https://huggingface.co/datasets/stanfordnlp/SHP)
25
+ - [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback)
26
+ - [Capybara](argilla/distilabel-capybara-dpo-7k-binarized)
27
+ - [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer)
28
+ - [Orca](argilla/distilabel-intel-orca-dpo-pairs)
29
 
30
+ The total number of the comparison pairs is 250K, where we perform the following data selection and cleaning strateges:
31
 
32
+ - HH-RLHF: we use all the base, rejection sampling, and online subsets but delete the samples whose chosen == rejected, leading to 115547;
33
+ - SHP: we only use the samples with score ratio > 2, for each prompt, we only take 1 comparison, leading to 55916;
34
+ - Ultrafeedback: similar to [UltraFeedback-Binarized](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned), we use the fine-grained score instead of the overall one to rank samples. Meanwhile, for each prompt, we take the best one v.s. random chosen one in the remaining samples. Finally, we delete the selected pairs with equal scores, leading to 62793.
35
+ - HelpSteer: we use the mean of helpfulness and correctness to rank samples. Meanwhile, we take the best sample v.s. the random chosen one in the remaining samples. Finally, we delete the selected pairs with equal scores, leading to 8206;
36
+ - Capybara: we delete the pairs whose chosen and rejected samples are of the same rating, leading to 7562;
37
+ - Orca: we delete the pairs whose chosen and rejected samples are of the same rating, leading to 6405.
38
 
 
39
 
40
+ ### Training
41
 
42
+ We train the model for one epoch with a learning rate of 1e-5, batch size 256, cosine learning rate decay with a warmup ratio 0.03. We present the training curve as follows.
43
 
44
+ ![Training Loss](training_curve.png)
45
 
 
46
 
 
47
 
 
48
 
 
49
 
50
+ ## Uses
51
 
52
+ ```python
53
+ rm_tokenizer = AutoTokenizer.from_pretrained("weqweasdas/RM-Gemma-2B")
54
+
55
+ rm_pipe = pipeline(
56
+ "sentiment-analysis",
57
+ model="weqweasdas/RM-Gemma-2B",
58
+ device="auto",
59
+ tokenizer=rm_tokenizer,
60
+ model_kwargs={"torch_dtype": torch.bfloat16}
61
+ )
62
+
63
+ pipe_kwargs = {
64
+ "return_all_scores": True,
65
+ "function_to_apply": "none",
66
+ "batch_size": 1
67
+ }
68
+
69
+ chat = [
70
+ {"role": "user", "content": "Hello, how are you?"},
71
+ {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
72
+ {"role": "user", "content": "I'd like to show off how chat templating works!"},
73
+ ]
74
+
75
+ test_texts = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False).replace(tokenizer.bos_token, "")
76
+ pipe_outputs = rm_pipe(test_texts, **pipe_kwargs)
77
+ rewards = [output[0]["score"] for output in pipe_outputs]
78
+ ```
79
 
80
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
81
 
 
82
 
 
83
 
84
+ ## Results
85
 
86
+ We collect the existing preference datasets and use them as a benchmark to evaluate the resulting reawrd model.
87
 
88
+ | Model/Test set | HH-RLHF-Helpful | SHP | Helpsteer helpful + correctness | Helpsteer All | MT Bench Human | MT Bench GPT4 | Alpaca Human | Alpaca GPT4| Alpca Human-crossed|
89
+ | -------------- | -------------- | ------- | ------- |
90
+ | open assistant | **0.68** | 0.73 | 0.68 | 0.72 |0.77 | 0.87 | 0.63 | 0.78 | 0.59 |
91
 
 
92
 
 
93
 
 
94
 
95
+ ## Reference
96
 
97
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
98
 
99
+ To be added. The reward model may be readily used for rejection sampling finetuning (
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
 
101
 
102
+ ```
103
+ @article{dong2023raft,
104
+ title={Raft: Reward ranked finetuning for generative foundation model alignment},
105
+ author={Dong, Hanze and Xiong, Wei and Goyal, Deepanshu and Pan, Rui and Diao, Shizhe and Zhang, Jipeng and Shum, Kashun and Zhang, Tong},
106
+ journal={arXiv preprint arXiv:2304.06767},
107
+ year={2023}
108
+ }
109
+ ```
110
 
 
111
 
112