File size: 7,235 Bytes
b2a5828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fbc8f
b2a5828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
license: apache-2.0
datasets:
- werty1248/Korean-1930-Novel-Scene-Summarize
language:
- ko
pipeline_tag: text-generation
---

## Model Card

- ์š”์•ฝ ์‹œ๋‚˜๋ฆฌ์˜ค ๊ธฐ๋ฐ˜ ์†Œ์„ค ์ƒ์„ฑ ๋ชจ๋ธ
- [werty1248/Korean-1930-Novel-Scene-Summarize](https://huggingface.co/datasets/werty1248/Korean-1930-Novel-Scene-Summarize) ์ž‘์—…์˜ ํšจ๊ณผ ํ™•์ธ์šฉ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

## Training Details

### Dataset

- [werty1248/Korean-1930-Novel-Scene-Summarize](https://huggingface.co/datasets/werty1248/Korean-1930-Novel-Scene-Summarize)
- ์ €์ž‘๊ถŒ์ด ๋งŒ๋ฃŒ๋œ 20์„ธ๊ธฐ ์ดˆ ํ•œ๊ตญ ๊ทผ๋Œ€๋ฌธํ•™ 96ํŽธ

### Preprocessing

- system prompt์™€ ํ•จ๊ป˜ ์†Œ์„ค์˜ ์ฒซ ๋ฌธ๋‹จ์„ ์ œ๊ณต
- ์ดํ›„ user๊ฐ€ ์‹œ๋‚˜๋ฆฌ์˜ค(50%) ๋˜๋Š” ์ด๋ฒคํŠธ(50%)๋ฅผ ์ œ๊ณตํ•˜๋ฉด assistant๊ฐ€ ๋‹ต๋ณ€์„ ์ƒ์„ฑ
- 3-shot multi-turn ๋ฐ์ดํ„ฐ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ํ•™์Šต

- ํ”„๋กฌํ”„ํŠธ ์˜ˆ์‹œ๋Š” ์•„๋ž˜์— ์žˆ์Šต๋‹ˆ๋‹ค.

- Axolotl(full config๋Š” ์•„๋ž˜์— ์žˆ์Šต๋‹ˆ๋‹ค)
  - LoRA: (rank=32, alpha=128)
  - NefTune_alpha: 5
  - total_batch_size: 8
  - num_epoch: 3

- 1xA100์—์„œ ์•ฝ 8์‹œ๊ฐ„ ํ•™์Šต

## Template & How to use

- ์œ ์ € instruction์„ ๋ฌด์‹œํ•˜๋Š” ๊ฒฝํ–ฅ ์žˆ์Œ
- ํ•œ์ž/์˜์–ด ๋‹จ์–ด๊ฐ€ ์„ž์ด๋Š” ํ˜„์ƒ ์™„ํ™”๋จ
- ํ•œ๊ตญ์–ด ๋Šฅ๋ ฅ์ด ๋” ๋–จ์–ด์ง„ ๊ฒƒ ๊ฐ™์Œ

### Input(๋ˆˆ๋ฌผ์„ ๋งˆ์‹œ๋Š” ์ƒˆ ๋„์ž…๋ถ€)

```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("werty1248/Qwen2-7B-Korean-1930-Novel-sft")
model = AutoModelForCausalLM.from_pretrained("werty1248/Qwen2-7B-Korean-1930-Novel-sft", torch_dtype=torch.bfloat16).to('cuda')

system_prompt = """๋‹น์‹ ์€ ์†Œ์„ค ์ž‘์„ฑ ์–ด์‹œ์Šคํ„ดํŠธ์ž…๋‹ˆ๋‹ค. ๋‹น์‹ ์˜ ์ž„๋ฌด๋Š” ์œ ์ €์˜ ๊ฐ€์ด๋“œ์— ๋”ฐ๋ผ 1900~1940๋…„๋Œ€ ๊ทผ๋Œ€ ํ•œ๊ตญ ์†Œ์„ค์„ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.
- ์ฃผ์–ด์ง„ ์‹œ๋‚˜๋ฆฌ์˜ค ์š”์•ฝ์„ ํ™•์ธํ•˜๊ณ , ์ด์ „ ๋Œ€ํ™”๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ํ”Œ๋กฏ์„ ๊ตฌ์„ฑํ•˜์‹ญ์‹œ์˜ค.
- ํ’๋ถ€ํ•œ ํ•œ๊ตญ์–ด ํ‘œํ˜„ ๋ฐ ๋Œ€ํ™”๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ฐฝ์˜์ ์œผ๋กœ ์งง์€ ์”ฌ์„ ์™„์„ฑํ•˜์„ธ์š”.
- ์”ฌ์˜ ๋Œ€์‚ฌ์— ๊ทผ๋Œ€ ํ•œ๊ตญ ํŠน์œ ์˜ ํ‘œํ˜„, ์–ดํœ˜, ์‚ฌํˆฌ๋ฆฌ, ์กด๋Œ“๋ง๊ณผ ๋ฐ˜๋ง์„ ๋ฐ˜์˜ํ•˜์‹ญ์‹œ์˜ค.
- ์”ฌ์˜ ์ฃผ์š” ์‚ฌ๊ฑด์— ๊ทผ๋Œ€ ํ•œ๊ตญ์˜ ์—ญ์‚ฌ์ , ๊ธฐ์ˆ ์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•˜์‹ญ์‹œ์˜ค.
- ์”ฌ์€ 5~10๋ฌธ์žฅ์œผ๋กœ ๊ตฌ์„ฑํ•˜์„ธ์š”.
"""

first_message = """### ์ฒซ ๋ฌธ๋‹จ
ํ•˜๋Š˜์„ ๋ถˆ์‚ฌ๋ฅด๋˜ ์šฉ์˜ ๋…ธ์—ฌ์›€๋„ ์žŠํ˜€์ง€๊ณ 
์™•์ž๋“ค์˜ ์„๋น„๋„ ์‚ฌํ†  ์†์— ๋ฌปํ˜€๋ฒ„๋ฆฐ
๊ทธ๋ฆฌ๊ณ  ๊ทธ๋Ÿฐ ๊ฒƒ๋“ค์— ๋ˆ„๊ตฌ๋„ ์‹ ๊ฒฝ์“ฐ์ง€ ์•Š๋Š”
์ƒ์กด์ด ์ฒœ๋ฐ•ํ•œ ๋†๋‹ด์ด ๋œ ์‹œ๋Œ€์—

ํ•œ ๋‚จ์ž๊ฐ€ ์‚ฌ๋ง‰์„ ๊ฑท๊ณ  ์žˆ์—ˆ๋‹ค.
"""

scenario = """### ๋“ฑ์žฅ์ธ๋ฌผ
์—ฌ๊ด€ ์ฃผ์ธ, ์ผ€์ด๊ฑด ๋“œ๋ผ์นด

### ์‹œ๋‚˜๋ฆฌ์˜ค
์—ฌ๊ด€ ์ฃผ์ธ์ด ๋ฌธ๋“ ์ฐฝ๋ฐ–์„ ๋ฐ”๋ผ๋ณธ๋‹ค. ์—ฌ๊ด€ ์ฃผ๋ณ€์€ ์˜จํ†ต ์‚ฌ๋ง‰์ด๋‹ค. ์ง€ํ‰์„  ์ € ๋ฉ€๋ฆฌ์„œ ํ•œ ์‚ฌ๋‚ด๊ฐ€ ํผ์ง€๋ง‰ํ•œ ์ž๋ฃจ๋ฅผ ์งˆ์งˆ ๋Œ๋ฉด์„œ ์—ฌ๊ด€ ๋ฐฉํ–ฅ์œผ๋กœ ๊ฑธ์–ด์˜จ๋‹ค.
"""
messages = [{'role':'system', 'content':system_prompt + first_message},
 {'role':'user', 'content':scenario},]

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)

prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(
    prompt,
    do_sample=True,
    temperature=0.8,
    top_k=50,
    top_p=0.95,
    add_special_tokens=True
)
print(outputs[0]["generated_text"][len(prompt):])
```

### Result
```
ํ•˜๋Š˜์€ ๊นจ๋—ํ•˜์˜€๋‹ค. ๋ฐ”๋žŒ๋„ ์˜์ด์ง€ ์•Š์•˜๋‹ค. ๋ฐ”์œ„ ์œ„์— ๊ตด๋Ÿฌ์ ธ ์žˆ๋Š” ํฌ์˜น์ด ํ•œ ๋ฉ๋งŒํ•˜๊ณ  ํ‘ธ๋ฅธ ํ–‡๋น› ์•„๋ž˜ ์ž˜ ๋ณด์˜€๋‹ค.

๊ฑฐ๊ธฐ๋Š” ๋งˆ์นจ ํ•œ ์ฑ„์˜ ์—ฌ๊ด€์ด ์ง€์ฒด๋กœ ๊ฝ‚ํ˜€ ์žˆ์—ˆ๋‹ค. ์ขŒ์šฐ ๋ฉ€๋ฆฌ ๋ฐ”์œ„๊ฐ€ ์„ฐ์„ ๋ฟ์ด๋‹ค. ๋‚˜๋ฌด๋„ ์ˆ˜๋ชฉ๋„ ์—†๋Š” ์˜จ ์ฒœ์ง€๊ฐ€ ํ›คํžˆ ์—ฌ๊ด€ ์˜†์„ ์—์›Œ์‹ธ๊ณ  ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. ์–ผ๋ฅธ ๋ณด๋ฉด ํ•œ ์กฐ๊ฐ ์„์ถ• ์† ๊ฐ™๊ธฐ๋„ ํ•˜์ง€๋งŒ ๊ฑด์ถ•์ด๋ผ๋Š๋‹ˆ ๋ณด๋‹ค๋Š” ๋„ํšŒ์— ๋•…์„ ๋‚ด์–ด๋†“๊ณ  ๋‹จ์ˆœํ•œ ๊ฐ„ํŒ ํ•˜๋‚˜๋ฅผ ๊ฑธ์–ด์„œ ๊ทธ๋Œ€๋กœ ๋ฒŒ์ดํ•˜๋Š” โ€˜์—ฌ๊ด€โ€™์ด๋‹ค. ๋ช‡๋ช‡ ์ข์€ ๊ธธ๋งŒ ๋“ค์–ด์™”๋‹ค๊ฐ€ ์‚ฌ๋ผ์กŒ์„ ๋ฟ ํ•œ ๊ธธ๋„ ์•ˆ ๋šซ๋ ค์ง„ ๊ทธ ์ž๋ฆฌ์— ๊ทธ๋Œ€๋กœ ์ง€ํƒฑ๋˜์–ด ์žˆ๋Š” ์—ฌ๊ด€์ด๋‹ค. ๊ธธ์— ๋‚˜ํƒ€๋‚˜๋Š” ์‚ฌ๋žŒ์€ ์—†๋‹ค. ์ขŒ์šฐ๋กœ ๋ฐ”์œ„๋ฅผ ๋ผ๊ณ  ๋Š˜ ๋น„์–ด ์žˆ๋Š” ์‚ฐ ์ค‘์—์„œ ๊ฐ„๊ฐ„์ด ๊ณ ๊ธฐ ๊ตฝ๋Š” ๋‹ฅ์ด์™€ ์‚ฏ๋ฐ”๊ตฌ๋‹ˆ๋ฉฐ ๊ณ ๊นƒ๊ฐ€๋งˆ๋ฅผ ๊ฑธ๊ณ  ํ–‰์ธ๋งŒ ๋ช‡ ๋งˆ๋ฆฌ์”ฉ ์ง€๋‚˜๊ฐ€๊ณ  ํ›คํ•˜๊ฒŒ ์„ ๋ฐ”๋‹ฅ์— ํ–‡๋น›๋งŒ ๋น„์น˜๊ณ  ํ•˜๋Š” ์“ธ์“ธํ•œ ์—ฌ๊ด€์ด๋‹ค. ๊ทธ๊ฒƒ์ด ๋ฃธ_service๋ผ๋Š” ์„ธ๊ณ„์™€๋„ ๋‹ฌ๋ฆฌ ์ฃผ์ธ๋„ ์—†๊ณ  ์‚ฌ์žฅ๋„ ์—†๊ณ  ์†๋„ ์—†๊ณ  ํ•œ ๊ฐ„ํŒ๋งŒ ๊ฑธ๊ณ  ์ฒœ๋‹น์ฒ˜๋Ÿผ ์™ธ๋กญ๊ฒŒ ์ง€ํ‚ค๊ณ  ์žˆ๋Š” ๋ชจ์–‘์ด๋‹ค.

๊ทธ๋Ÿฐ ์—ฌ๊ด€์—์„œ ์ด์œฝ๊ณ  ์†์ด ํ•œ ์‚ฌ๋žŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฐฝ๋ฌธ์ด ์—ด๋ ธ๋‹ค. ๋ฐ–์„ ๋‚ด๋‹ค๋ณด๋Š” ํ•œ ์ ์˜ ๊ฒ€์€ ๊ทธ๋ฆผ์ž๊ฐ€ ์ฐฝ ์•ž์—์„œ ๋๋๋‚ด ์˜ค๋ฏ€๋Ÿฌ์ง„๋‹ค. ๊ทธ๋Ÿฌ๋”๋‹ˆ ๋‹ค์‹œ ํ•œ์ฐธ ํ›„์— ๊ทธ ๊ฒ€์€ ๊ทธ๋ฆผ์ž๋Š” ์›ƒ๋ชฉ์œผ๋กœ ์ฐจ์ฐจ ๋‚˜์™€ ๊ฐ€์ง€๊ณ ๋Š” ๊ทธ๋Œ€๋กœ ์‚ฌ๋ผ์ง€๋Š” ๊ฒƒ์ด๋‹ค.

๊ทธ๋กœ๋ถ€ํ„ฐ ์—ฌ๊ด€์€ ์ƒˆ๋กœ์šด ์ผ์„ ๋‹นํ•˜์˜€๋‹ค. ๋ฐ”์‹œ๋ฆฌ์˜ค ์ž๋ฃจ๋ฅผ ๋“ค๊ณ  ํ•œ ์‚ฌ๋‚˜์ด๊ฐ€ ๊ฑธ์–ด ๋“ค์–ด์˜ค์ง€ ์•Š์•˜๋Š”๊ฐ€. ์–ผ๊ตด์€ ๋จผ๋น›์œผ๋กœ ๋˜‘๋˜‘ํžˆ ๋ชป ๋ณด์ด๋‚˜ ๋ฒŒ์จ ์‚ฌ๋ฉด ์‚ฌ์˜ค ๊ฐ„๋ฐ–์— ์•ˆ ๋˜๋Š” ๊ณณ์— ํผ์งํ•œ ์ž๋ฃจ๋ฅผ
```

### Result of Original model(Qwen/Qwen2-7b-instruct)

```
"๊ทธ๊ฒŒ ๋ˆ„๊ตฌ๋ƒ? ์™œ ์ด๋ ‡๊ฒŒ ๋จผ ๊ณณ์—์„œ ์ด๊ณณ์œผ๋กœ ์™€?" ์—ฌ๊ด€ ์ฃผ์ธ์ด ๋ฌผ์–ด๋ณด๋ฉฐ ์ฐฝ๋ฌธ์„ ๋ฒŒ๋ฆฌ๊ณ  ๋งํ–ˆ๋‹ค. ๊ทธ๋…€์˜ ๋ชฉ์†Œ๋ฆฌ๋Š” ์‚ฌ๋ง‰์˜ ๊ฑด์กฐํ•จ๊ณผ ํ•จ๊ป˜ ๊ฑฐ์นœ ๋ฐ”๋žŒ์— ๊ฐ€๋ผ์•‰์•˜๋‹ค.

์ผ€์ด๊ฑด ๋“œ๋ผ์นด๋ผ๋Š” ์‚ฌ๋‚ด๋Š” ์ž์‹ ์˜ ์ž๋ฃจ๋ฅผ ๋” ์งˆ์งˆ ๋Œ๋ฉฐ ์—ฌ๊ด€ ์ชฝ์œผ๋กœ ๋‹ค๊ฐ€๊ฐ”๋‹ค. ๊ทธ์˜ ๋ˆˆ์—๋Š” ํฌ๋ฏธํ•˜๊ฒŒ ๋ณด์ด๋Š” ๋จผ์ง€์™€ ๋จผ์ง€๊ฐ€ ๊ฐ์‹ธ๊ณ  ์žˆ๋Š” ํ–‡๋น›์ด ๋น›๋‚˜๋Š” ๋“ฏํ–ˆ๋‹ค. ๊ทธ์˜ ์–ผ๊ตด์—๋Š” ๋•€๋ฐฉ์šธ์ด ๊ตด๋Ÿฌ ๋‚ด๋ ค๊ฐ€๋ฉฐ, ๊ทธ์˜ ์ž…์€ ๋งํ•  ์ค€๋น„๋ฅผ ํ•˜๊ณ  ์žˆ์—ˆ๋‹ค.

"์—ฌ๊ด€ ์ฃผ์ธ๋‹˜, ์ €๋ฅผ ๋ฐ›์•„์ฃผ์‹ค ์ˆ˜ ์žˆ์„๊นŒ์š”? ์ œ๊ฐ€ ์ด๊ณณ์—์„œ ์ž ์‹œ ์‰ฌ๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค." ๊ทธ์˜ ๋ชฉ์†Œ๋ฆฌ๋Š” ์‚ฌ๋ง‰์˜ ๋ฌด๋””ํ•œ ์กฐ์šฉํ•จ์„ ๊นจ์šฐ๋ฉฐ ์ „ํ•ด์กŒ๋‹ค.

์—ฌ๊ด€ ์ฃผ์ธ์€ ๊ทธ์˜ ์ฒด์œก๋ณต๊ณผ ๋•€ๆฑƒๆฑƒํ•œ ๋ชจ์Šต์„ ๋ณด๋ฉฐ, ์ด ์‚ฌ๋‚ด์˜ ์ƒํ™ฉ์— ๋Œ€ํ•ด ๊ฑฑ์ •์Šค๋Ÿฌ์› ๋‹ค. "๊ทธ๋ž˜, ๋„ค๊ฐ€ ํ•„์š”ํ•˜๋‹ค๊ณ  ๋Š๊ผˆ๋‹ค๋ฉด, ์—ฌ๊ธฐ์„œ ์‰ฌ์–ด๋ผ. ํ•˜์ง€๋งŒ ์™œ ์ด๋Ÿฐ ๊ณณ๊นŒ์ง€ ์™”๋Š”์ง€ ์„ค๋ช…ํ•ด ์ค˜์•ผ ํ•  ๊ฒƒ ๊ฐ™์•„." ๊ทธ๋…€์˜ ๋งํˆฌ๋Š” ์นœ๊ทผํ•˜๋ฉด์„œ๋„ ๋ถ„๋ช…ํ•œ ์ง€์‹œ์˜€๋‹ค.
```

## Others

### Axolotl config

```
base_model: Qwen/Qwen2-7B-Instruct
trust_remote_code: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: train_data.jsonl
    type: sharegpt
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

neftune_noise_alpha: 5
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
special_tokens:
```