--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: distilbert-base-cased model-index: - name: whispQuote-ChunkDQ-DistilBERT results: [] --- # whispQuote-ChunkDQ-DistilBERT This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2582 - Precision: 0.5816 - Recall: 0.8129 - F1: 0.6780 - Accuracy: 0.9126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 164 | 0.3432 | 0.4477 | 0.5795 | 0.5052 | 0.8796 | | No log | 2.0 | 328 | 0.3053 | 0.4308 | 0.6985 | 0.5329 | 0.8952 | | No log | 3.0 | 492 | 0.2602 | 0.5716 | 0.7775 | 0.6588 | 0.9097 | | 0.3826 | 4.0 | 656 | 0.2607 | 0.5664 | 0.8070 | 0.6656 | 0.9114 | | 0.3826 | 5.0 | 820 | 0.2582 | 0.5816 | 0.8129 | 0.6780 | 0.9126 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.10.2+cu113 - Datasets 2.9.0 - Tokenizers 0.13.2