--- license: apache-2.0 datasets: - HuggingFaceFW/fineweb-2 language: - aa - ae - af - ak - am - ar - as - hi - en - ne - bh - sa metrics: - accuracy base_model: - Qwen/QVQ-72B-Preview new_version: Qwen/QwQ-32B-Preview pipeline_tag: question-answering --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact HuggingFaceFW/fineweb-2 [More Information Needed] import sagemaker import boto3 from sagemaker.huggingface import HuggingFace try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] hyperparameters = { 'model_name_or_path':'Qwen/Qwen2-VL-72B', 'output_dir':'/opt/ml/model' # add your remaining hyperparameters # more info here https://github.com/huggingface/transformers/tree/v4.37.0/path/to/script } # git configuration to download our fine-tuning script git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.37.0'} # creates Hugging Face estimator huggingface_estimator = HuggingFace( entry_point='train.py', source_dir='./path/to/script', instance_type='ml.p3.2xlarge', instance_count=1, role=role, git_config=git_config, transformers_version='4.37.0', pytorch_version='2.1.0', py_version='py310', hyperparameters = hyperparameters ) # starting the train job huggingface_estimator.fit() git lfs install # Load model directly from transformers import AutoProcessor, AutoModelForImageTextToText from openai import OpenAI client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" ) messages = [ { "role": "user", "content": [ { "type": "text", "text": "Describe this image in one sentence." }, { "type": "image_url", "image_url": { "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" } } ] } ] stream = client.chat.completions.create( model="Qwen/QVQ-72B-Preview", messages=messages, max_tokens=500, stream=True ) for chunk in stream: print(chunk.choices[0].delta.content, end="") processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B") model = AutoModelForImageTextToText.from_pretrained("Qwen/Qwen2-VL-72B")