--- language: an language_name: Aragonese language_family: romance_iberian tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-romance_iberian license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.275 - name: best_isotropy type: isotropy value: 0.8232 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Aragonese - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Aragonese** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.559x | 3.56 | 0.1247% | 1,207,427 | | **16k** | 3.854x | 3.85 | 0.1351% | 1,114,964 | | **32k** | 4.092x | 4.09 | 0.1434% | 1,050,138 | | **64k** | 4.275x 🏆 | 4.28 | 0.1498% | 1,005,070 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Bobadilla puet estar: Bobadilla, un municipio de La Rioja. Bobadilla del Campo, ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁bob ad illa ▁puet ▁estar : ▁bob ad illa , ... (+17 more)` | 27 | | 16k | `▁bob ad illa ▁puet ▁estar : ▁bob ad illa , ... (+17 more)` | 27 | | 32k | `▁bob ad illa ▁puet ▁estar : ▁bob ad illa , ... (+17 more)` | 27 | | 64k | `▁bobadilla ▁puet ▁estar : ▁bobadilla , ▁un ▁municipio ▁de ▁la ... (+11 more)` | 21 | **Sample 2:** `Charleville-Mézières ye una localidat y comuna francesa, capital d'o departament...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁char le ville - m é zi ères ▁ye ▁una ... (+26 more)` | 36 | | 16k | `▁char le ville - mé zi ères ▁ye ▁una ▁localidat ... (+25 more)` | 35 | | 32k | `▁char le ville - mé zi ères ▁ye ▁una ▁localidat ... (+23 more)` | 33 | | 64k | `▁charleville - mézières ▁ye ▁una ▁localidat ▁y ▁comuna ▁francesa , ... (+19 more)` | 29 | **Sample 3:** `Schöngeising (en bavaro Scheegeising) ye un municipio de Bavera, Alemanya. Se tr...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁sch ön ge is ing ▁( en ▁bavaro ▁s che ... (+29 more)` | 39 | | 16k | `▁schön ge is ing ▁( en ▁bavaro ▁sche e ge ... (+25 more)` | 35 | | 32k | `▁schön ge ising ▁( en ▁bavaro ▁sche e ge ising ... (+20 more)` | 30 | | 64k | `▁schön ge ising ▁( en ▁bavaro ▁sche e ge ising ... (+20 more)` | 30 | ### Key Findings - **Best Compression:** 64k achieves 4.275x compression - **Lowest UNK Rate:** 8k with 0.1247% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 25,712 | 14.65 | 233,669 | 16.7% | 37.4% | | **2-gram** | Subword | 257 🏆 | 8.01 | 7,000 | 68.7% | 99.3% | | **3-gram** | Word | 87,357 | 16.41 | 461,562 | 8.3% | 23.0% | | **3-gram** | Subword | 2,151 | 11.07 | 52,727 | 25.8% | 73.4% | | **4-gram** | Word | 209,676 | 17.68 | 900,576 | 6.8% | 17.2% | | **4-gram** | Subword | 12,170 | 13.57 | 289,768 | 12.6% | 39.7% | | **5-gram** | Word | 208,007 | 17.67 | 773,213 | 6.3% | 16.4% | | **5-gram** | Subword | 46,669 | 15.51 | 901,225 | 7.3% | 25.5% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `d a` | 107,208 | | 2 | `d o` | 106,261 | | 3 | `en a` | 60,798 | | 4 | `en o` | 45,519 | | 5 | `de l` | 37,458 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a provincia de` | 17,480 | | 2 | `d a provincia` | 13,447 | | 3 | `una superficie de` | 12,736 | | 4 | `suya población ye` | 12,405 | | 5 | `en una superficie` | 12,352 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `suya población ye de` | 12,284 | | 2 | `en una superficie de` | 12,148 | | 3 | `d a provincia de` | 12,141 | | 4 | `habitants en una superficie` | 11,275 | | 5 | `a suya población ye` | 11,250 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a suya población ye de` | 11,136 | | 2 | `habitants en una superficie de` | 11,095 | | 3 | `una densidat de población de` | 10,633 | | 4 | `km con una densidat de` | 7,736 | | 5 | `con una densidat de población` | 7,674 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a _` | 1,873,392 | | 2 | `_ d` | 1,605,638 | | 3 | `e _` | 1,544,207 | | 4 | `s _` | 1,309,585 | | 5 | `n _` | 1,215,896 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ d e` | 891,253 | | 2 | `d e _` | 772,067 | | 3 | `_ d '` | 491,537 | | 4 | `e n _` | 478,088 | | 5 | `_ e n` | 454,282 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ d e _` | 737,370 | | 2 | `_ e n _` | 397,348 | | 3 | `_ d ' a` | 234,868 | | 4 | `a _ d e` | 184,900 | | 5 | `_ c o n` | 179,093 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a _ d e _` | 147,074 | | 2 | `_ q u e _` | 125,472 | | 3 | `c i ó n _` | 124,436 | | 4 | `o _ d e _` | 123,146 | | 5 | `_ d ' a _` | 106,742 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 257 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~25% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.9753 | 1.966 | 7.59 | 368,549 | 2.5% | | **1** | Subword | 0.7834 | 1.721 | 5.75 | 3,672 | 21.7% | | **2** | Word | 0.3415 | 1.267 | 2.01 | 2,791,626 | 65.9% | | **2** | Subword | 0.8176 | 1.763 | 5.23 | 21,123 | 18.2% | | **3** | Word | 0.1548 | 1.113 | 1.33 | 5,610,004 | 84.5% | | **3** | Subword | 0.7695 | 1.705 | 4.30 | 110,486 | 23.0% | | **4** | Word | 0.0739 🏆 | 1.053 | 1.14 | 7,469,366 | 92.6% | | **4** | Subword | 0.7129 | 1.639 | 3.37 | 474,961 | 28.7% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `de las neveras y rfef aprebó a pachina web oficial d afers son asociadas con os` 2. `d elba antiparte la provincia d as que se veiga torda collerada rafel vidaller tricas libro` 3. `a rendición de sattler torna ta partecipar en ifriquiya y cariño homenage vasallage en aragonés vinc...` **Context Size 2:** 1. `d a ciudat de zaragoza tomo i de castiella y leyón espanya o escritor de lausbubengeschichte ye` 2. `d o reino se consolida la influyencia de l exercito estatounitesne en europa s extiende dende os` 3. `en a provincia de teruel d o cual en fan parte 4 cantons y 129 comunas lista` **Context Size 3:** 1. `a provincia de zaragoza en a provincia de concepción y d as tres serols estando dimpués enamplato a` 2. `d a provincia de guipuzcua ta atros usos se veiga carlos ix carlos ix 27 de chunio de` 3. `una superficie de 158 60 km y una densidat de población de 346 35 hab km a suya` **Context Size 4:** 1. `suya población ye de 81 habitants en una superficie de 194 49 km con una densidat de población de` 2. `en una superficie de 64 16 km con una densidat de población de 43 44 hab km demografía administració...` 3. `d a provincia de burgos ta atros usos se veiga fort yuma desambigación fort yuma títol orichinal en ...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_un_der_dent_ckm` 2. `as_en_as_2_tacla` 3. `en_lern_don_vitr` **Context Size 2:** 1. `a_saus_dabinascer` 2. `_derfica_sublosti` 3. `e_manaisitau_suyo` **Context Size 3:** 1. `_dens._val_novant,` 2. `de_319_de_fuel,_qu` 3. `_d'o_primetada_cic` **Context Size 4:** 1. `_de_jean-jose_(naix` 2. `_en_sido_per_bueno,` 3. `_d'anglés_jean_sabi` ### Key Findings - **Best Predictability:** Context-4 (word) with 92.6% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (474,961 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 183,928 | | Total Tokens | 11,661,736 | | Mean Frequency | 63.40 | | Median Frequency | 4 | | Frequency Std Dev | 2823.00 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | de | 741,521 | | 2 | d | 497,145 | | 3 | a | 440,622 | | 4 | en | 410,893 | | 5 | o | 301,627 | | 6 | y | 247,568 | | 7 | que | 127,976 | | 8 | l | 109,848 | | 9 | ye | 109,774 | | 10 | una | 105,502 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | beljakova | 2 | | 2 | méchaly | 2 | | 3 | wiedemann | 2 | | 4 | limotte | 2 | | 5 | wlodkowski | 2 | | 6 | taos | 2 | | 7 | slovis | 2 | | 8 | samaha | 2 | | 9 | seros | 2 | | 10 | cookeville | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.0690 | | R² (Goodness of Fit) | 0.998251 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 44.8% | | Top 1,000 | 66.8% | | Top 5,000 | 80.7% | | Top 10,000 | 85.9% | ### Key Findings - **Zipf Compliance:** R²=0.9983 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 44.8% of corpus - **Long Tail:** 173,928 words needed for remaining 14.1% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8168 | 0.3517 | N/A | N/A | | **mono_64d** | 64 | 0.8232 🏆 | 0.2779 | N/A | N/A | | **mono_128d** | 128 | 0.8044 | 0.2016 | N/A | N/A | | **aligned_32d** | 32 | 0.8168 | 0.3524 | 0.1520 | 0.4840 | | **aligned_64d** | 64 | 0.8232 | 0.2773 | 0.2480 | 0.6340 | | **aligned_128d** | 128 | 0.8044 | 0.2034 | 0.3740 | 0.7380 | ### Key Findings - **Best Isotropy:** mono_64d with 0.8232 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2774. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 37.4% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **-0.358** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-co` | confrontatos, conchecturau, coluche | | `-ca` | casartelli, camprodón, canthus | | `-re` | reitzenstein, reformata, reinando | | `-de` | destruyir, denasalizadas, debucourt | | `-ma` | marktes, matosinhos, marciac | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-s` | mourvilles, iliricas, mylonas | | `-a` | cingüenda, lecinyena, reformata | | `-as` | iliricas, mylonas, aeneas | | `-os` | confrontatos, agnatos, estranios | | `-es` | mourvilles, marktes, forbes | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `ient` | 1.70x | 176 contexts | cient, oient, dient | | `ento` | 1.74x | 126 contexts | sento, bento, cento | | `rago` | 2.03x | 58 contexts | arago, trago, ragot | | `ranc` | 1.64x | 141 contexts | franc, rance, ranca | | `ació` | 2.09x | 47 contexts | nació, ación, fació | | `enci` | 1.53x | 164 contexts | encia, renci, oencia | | `obla` | 1.90x | 56 contexts | robla, pobla, nobla | | `nter` | 1.50x | 146 contexts | anter, enter, inter | | `ncia` | 1.72x | 61 contexts | encia, uncia, oencia | | `cion` | 1.50x | 110 contexts | scion, nacion, accion | | `idat` | 2.00x | 28 contexts | unidat, deidat, humidat | | `mbre` | 1.55x | 75 contexts | ambre, ombre, umbre | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-co` | `-s` | 71 words | concilios, comenges | | `-ca` | `-s` | 53 words | cabrinos, caracteres | | `-ca` | `-a` | 49 words | cafeína, caixera | | `-co` | `-a` | 49 words | cosida, conquiolina | | `-ma` | `-s` | 41 words | mauriscus, mandos | | `-ma` | `-a` | 36 words | mainila, mamma | | `-re` | `-s` | 34 words | reprimius, rechiradors | | `-re` | `-a` | 33 words | relochería, renacentista | | `-de` | `-a` | 30 words | desidia, dentada | | `-de` | `-s` | 30 words | demograficos, deverbativos | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | repoblatos | **`re-poblat-os`** | 6.0 | `poblat` | | altoaragonesas | **`altoaragon-es-as`** | 6.0 | `altoaragon` | | recullindo | **`re-cullindo`** | 4.5 | `cullindo` | | reorganizar | **`re-organizar`** | 4.5 | `organizar` | | romanticos | **`romantic-os`** | 4.5 | `romantic` | | casellato | **`ca-sellato`** | 4.5 | `sellato` | | discapacitatos | **`discapacitat-os`** | 4.5 | `discapacitat` | | lexicales | **`lexical-es`** | 4.5 | `lexical` | | monetarias | **`monetari-as`** | 4.5 | `monetari` | | reprodución | **`re-produción`** | 4.5 | `produción` | | deportaban | **`de-portaban`** | 4.5 | `portaban` | | desconoixitas | **`de-sconoixit-as`** | 3.0 | `sconoixit` | | caspolinas | **`ca-spolin-as`** | 3.0 | `spolin` | | conservaderas | **`co-nservader-as`** | 3.0 | `nservader` | | decimetros | **`de-cimetr-os`** | 3.0 | `cimetr` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Aragonese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.28x) | | N-gram | **2-gram** | Lowest perplexity (257) | | Markov | **Context-4** | Highest predictability (92.6%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 17:05:39*