Edit model card

wav2vec2_common_voice_accents_scotland

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 48
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 384
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.7171 1.28 400 1.1618
0.4391 2.56 800 0.2422
0.2259 3.83 1200 0.2071
0.1813 5.11 1600 0.2126
0.1531 6.39 2000 0.2010
0.1383 7.67 2400 0.2004
0.13 8.95 2800 0.2069
0.1193 10.22 3200 0.2081
0.1124 11.5 3600 0.2051
0.1023 12.78 4000 0.2175
0.097 14.06 4400 0.2261
0.0863 15.34 4800 0.2301
0.0823 16.61 5200 0.2334
0.079 17.89 5600 0.2252
0.0743 19.17 6000 0.2393
0.0696 20.45 6400 0.2481
0.0644 21.73 6800 0.2416
0.064 23.0 7200 0.2449
0.0584 24.28 7600 0.2660
0.0544 25.56 8000 0.2630
0.0523 26.84 8400 0.2677
0.0494 28.12 8800 0.2730
0.0462 29.39 9200 0.2752

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train willcai/wav2vec2_common_voice_accents_scotland

Space using willcai/wav2vec2_common_voice_accents_scotland 1