willtai commited on
Commit
0b7ec99
·
1 Parent(s): 1a56619

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.77 +/- 17.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd8e6a0a820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd8e6a0a8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd8e6a0a940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd8e6a0a9d0>", "_build": "<function ActorCriticPolicy._build at 0x7fd8e6a0aa60>", "forward": "<function ActorCriticPolicy.forward at 0x7fd8e6a0aaf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd8e6a0ab80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd8e6a0ac10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd8e6a0aca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd8e6a0ad30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd8e6a0adc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd8e6a0ae50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd8e6a058a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673477163591251632, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADczby/7Kk/Eu+8vi4GD7/RmWM8oAjtPAAAAAAAAAAATSRhPXsejrqBuya5fBoatCu61TomgkE4AACAPwAAgD9mjbs9x76xP3+IBT/SCYa+JtqGPVFmiT4AAAAAAAAAAMCKgj17vIm6BBw8M1XxUivNJyC7nlHNswAAgD8AAIA/mgHZuxQ4nLpYW962xNzFsAeGtrobGP41AACAPwAAgD/mQk8+gSr2vLJEijrd5h+5ADBbvoAKvbkAAIA/AACAP+a4zD1SYpm7TjPIvH7AnzwRuOm8QtKHPQAAAAAAAIA/YGRWPjqhJj9eLH+9JFKyvoGmfD21bqK9AAAAAAAAAACtxz8+JCalPvrCe77xvGG+HYhzvTIywLwAAAAAAAAAAHZaqb4Qy6M/aFkbv9UnCL/2aJS+8tVKvQAAAAAAAAAAE5cCvpn8kT/GFyC/E24ev4hMj71srj++AAAAAAAAAACm04E9KSgUP+BKU72llpG+XMIAvb2E6r0AAAAAAAAAAFp1vj3OxsI+0M/lPG17lL70V0095QPkPAAAAAAAAAAAIunCviYAFz/cpa29ABOlvuwfgL7ipTY9AAAAAAAAAAANa7K9wwUSuoYviDmyYAM2ls5wu5rWtbgAAIA/AAAAAOaRIL1i81o/DSuyvZ6/tr7ibWW9U+gJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYaWCiionb0CUhpRSlIwBbJRNJQGMAXSUR0CRciCAtnPFdX2UKGgGaAloD0MISdv4E9WickCUhpRSlGgVTSoBaBZHQJF1Uqz7di51fZQoaAZoCWgPQwgo0ZLHU5drQJSGlFKUaBVNKAFoFkdAkXZhtUGVzXV9lChoBmgJaA9DCAytTs6Q9HFAlIaUUpRoFU0WAWgWR0CReAuB+WnkdX2UKGgGaAloD0MIem8MAcBpXkCUhpRSlGgVTegDaBZHQJF4dVDKHO91fZQoaAZoCWgPQwgIc7uXO+5xQJSGlFKUaBVNOgFoFkdAkXkNm6GxlnV9lChoBmgJaA9DCLYODvam8G5AlIaUUpRoFU0vAWgWR0CReWc45tFbdX2UKGgGaAloD0MI5X6HosA6bECUhpRSlGgVTSwBaBZHQJF5mhoM8YB1fZQoaAZoCWgPQwiqm4u/7aE+QJSGlFKUaBVL72gWR0CReaw3o9s8dX2UKGgGaAloD0MIgv3Xuen9b0CUhpRSlGgVTR8BaBZHQJF5umsNlRR1fZQoaAZoCWgPQwhQ/u4d9cxyQJSGlFKUaBVNIgFoFkdAkXrNEgGKRHV9lChoBmgJaA9DCBufyf55NnJAlIaUUpRoFU0sAWgWR0CRe1iLl3hXdX2UKGgGaAloD0MIvOtsyL+nckCUhpRSlGgVTRkBaBZHQJF7nAckt291fZQoaAZoCWgPQwg6lQwA1TFwQJSGlFKUaBVNIwFoFkdAkXuvIS13MnV9lChoBmgJaA9DCOup1VdXO3FAlIaUUpRoFU0vAWgWR0CRfAN34bjtdX2UKGgGaAloD0MIsqAwKBPMcUCUhpRSlGgVTTkBaBZHQJF9kbbUPQR1fZQoaAZoCWgPQwiL+49MB5puQJSGlFKUaBVNEQFoFkdAkX7Xn2ZiNXV9lChoBmgJaA9DCI/iHHX02W5AlIaUUpRoFU1rAWgWR0CRfuD8tPHldX2UKGgGaAloD0MI3o/bL5/Rb0CUhpRSlGgVTQEBaBZHQJGAcctGus91fZQoaAZoCWgPQwjC3O7lvsFsQJSGlFKUaBVNDgFoFkdAkYFA6hg3LnV9lChoBmgJaA9DCIYb8PlhqnFAlIaUUpRoFU0RAWgWR0CRgjzoUzsQdX2UKGgGaAloD0MIilqaW2EKc0CUhpRSlGgVTSgBaBZHQJGCzsE7nxJ1fZQoaAZoCWgPQwgW26SiMYxyQJSGlFKUaBVNLAFoFkdAkYO1s54nnnV9lChoBmgJaA9DCBsOSwN/3XBAlIaUUpRoFU14AWgWR0CRg7bkOqecdX2UKGgGaAloD0MIZYnOMgt5b0CUhpRSlGgVTSwBaBZHQJGDyY4Qz1t1fZQoaAZoCWgPQwiJsreUs4VxQJSGlFKUaBVL/WgWR0CRhDlO45LidX2UKGgGaAloD0MIPu3w1+SKbUCUhpRSlGgVTT8BaBZHQJGETKOktVd1fZQoaAZoCWgPQwgMWHIVy8RxQJSGlFKUaBVNEAFoFkdAkYSPcvduYXV9lChoBmgJaA9DCKSpnsy/JHFAlIaUUpRoFU0sAWgWR0CRhOk+X7cgdX2UKGgGaAloD0MI4NVyZ6a0b0CUhpRSlGgVTS8BaBZHQJGGOHuZ1FJ1fZQoaAZoCWgPQwjX9nZL8r1vQJSGlFKUaBVNBQFoFkdAkYaceS0SiHV9lChoBmgJaA9DCFR0JJd/b25AlIaUUpRoFU1UAWgWR0CRhugte2NOdX2UKGgGaAloD0MISghW1csacECUhpRSlGgVTTcBaBZHQJGJZvS+g151fZQoaAZoCWgPQwg1CklmdUltQJSGlFKUaBVNFgFoFkdAkYnhv3rUsnV9lChoBmgJaA9DCGTmApdHhnBAlIaUUpRoFUvuaBZHQJGMNqDbrTp1fZQoaAZoCWgPQwhIbk26LSpuQJSGlFKUaBVNIQFoFkdAkYw5ON5t33V9lChoBmgJaA9DCHPYfcfwJ25AlIaUUpRoFU0lAWgWR0CRjPa11GLDdX2UKGgGaAloD0MISWk2j0PscUCUhpRSlGgVTQ8BaBZHQJGNfaK1og51fZQoaAZoCWgPQwhJaTaPwwtuQJSGlFKUaBVNIAFoFkdAkY2TRD1GsnV9lChoBmgJaA9DCJwXJ75aN3BAlIaUUpRoFU0yAWgWR0CRjj4+r2g4dX2UKGgGaAloD0MI+cCO/0LVcUCUhpRSlGgVTSwBaBZHQJGO997Wuox1fZQoaAZoCWgPQwje5LfopHVwQJSGlFKUaBVNgwFoFkdAkY8AemvW6XV9lChoBmgJaA9DCNGUnX6QzHJAlIaUUpRoFU0ZAWgWR0CRkCB4Uvf1dX2UKGgGaAloD0MIxxLWxlgrc0CUhpRSlGgVTUYBaBZHQJGQL4j8k2R1fZQoaAZoCWgPQwgTgH9KFZFxQJSGlFKUaBVNKgFoFkdAkZERE4Nqg3V9lChoBmgJaA9DCIhp39wf4XBAlIaUUpRoFU0mAWgWR0CRkUM36yjYdX2UKGgGaAloD0MIchdhinLwcECUhpRSlGgVTY4BaBZHQJGRUdXDFZR1fZQoaAZoCWgPQwi9HeG04PNuQJSGlFKUaBVNBQFoFkdAkZMOpS75EnV9lChoBmgJaA9DCHv2XKZmoHBAlIaUUpRoFU0/AWgWR0CRq5HlwLmZdX2UKGgGaAloD0MIKy/5n/yFcUCUhpRSlGgVTRQBaBZHQJGtajTKDCh1fZQoaAZoCWgPQwhE2zF1V7hJQJSGlFKUaBVL62gWR0CRrgWlMyrQdX2UKGgGaAloD0MICYuKOF0ucECUhpRSlGgVTTABaBZHQJGvHpW3jMp1fZQoaAZoCWgPQwjLgR5qW3lvQJSGlFKUaBVNIgFoFkdAkbA9xEORT3V9lChoBmgJaA9DCAe139oJ83JAlIaUUpRoFU0mAWgWR0CRsF8zyjHodX2UKGgGaAloD0MI0LaadQacckCUhpRSlGgVTSABaBZHQJGx4j0L+gl1fZQoaAZoCWgPQwh3oblOI41xQJSGlFKUaBVNLwFoFkdAkbJ+y7f513V9lChoBmgJaA9DCGuA0lCj5nFAlIaUUpRoFU0OAWgWR0CRsqXvH93sdX2UKGgGaAloD0MIcZF7urpibkCUhpRSlGgVTXcBaBZHQJGzLIdU83d1fZQoaAZoCWgPQwgg1EUKZZhtQJSGlFKUaBVNGAFoFkdAkbQ8BMi8nXV9lChoBmgJaA9DCAWHF0TkDXFAlIaUUpRoFUv5aBZHQJG1SN+9all1fZQoaAZoCWgPQwijsfZ3tglxQJSGlFKUaBVNbAFoFkdAkbYJb+tKZnV9lChoBmgJaA9DCLe3W5ID5HJAlIaUUpRoFU1HAWgWR0CRthOsDGLldX2UKGgGaAloD0MIaHizBi/HcUCUhpRSlGgVTQMBaBZHQJG5lDJEH+t1fZQoaAZoCWgPQwiMvoI0YzpuQJSGlFKUaBVNUAFoFkdAkbp56IFeOXV9lChoBmgJaA9DCOmBj8EKLG1AlIaUUpRoFU0HAWgWR0CRuptPHktFdX2UKGgGaAloD0MI8aDZde/rcUCUhpRSlGgVTRIBaBZHQJG7JInSfDl1fZQoaAZoCWgPQwjg9gSJ7axaQJSGlFKUaBVN6ANoFkdAkbvs3Mpw0nV9lChoBmgJaA9DCDDxR1FnD3JAlIaUUpRoFU1XAWgWR0CRvFmbLEDRdX2UKGgGaAloD0MIs0P8wxYmbUCUhpRSlGgVTRwBaBZHQJG87GT9sJp1fZQoaAZoCWgPQwiKc9TRsfRwQJSGlFKUaBVNCQFoFkdAkbz0th/iHnV9lChoBmgJaA9DCJxOstVl6nJAlIaUUpRoFU11AWgWR0CRvSK5kK/mdX2UKGgGaAloD0MI6Qsh530cbECUhpRSlGgVTSoBaBZHQJG97Egntv51fZQoaAZoCWgPQwgogjgP55VxQJSGlFKUaBVNDQFoFkdAkb6CF0xM4HV9lChoBmgJaA9DCA3iAzs+13FAlIaUUpRoFU0/AmgWR0CRvyDzAeq8dX2UKGgGaAloD0MINzemJ+y4ckCUhpRSlGgVTSkBaBZHQJHA9e3QUpN1fZQoaAZoCWgPQwicbAN3oPBuQJSGlFKUaBVNLAFoFkdAkcEbZrYXf3V9lChoBmgJaA9DCKBOeXQjTE1AlIaUUpRoFUveaBZHQJHCYcGTs6d1fZQoaAZoCWgPQwjWxW00APpvQJSGlFKUaBVNFwFoFkdAkcO51ie/YnV9lChoBmgJaA9DCB+94T5yv3FAlIaUUpRoFUv/aBZHQJHEMoc7yQR1fZQoaAZoCWgPQwhqZ5ja0iVvQJSGlFKUaBVNHwFoFkdAkcZb6Hj6vnV9lChoBmgJaA9DCFr1udoKI3FAlIaUUpRoFU0XAWgWR0CRxoFH8TBZdX2UKGgGaAloD0MIYcWp1sJGc0CUhpRSlGgVTUgBaBZHQJHGoVzp5eJ1fZQoaAZoCWgPQwi5x9KHrg1zQJSGlFKUaBVNIAFoFkdAkcdvACW/rXV9lChoBmgJaA9DCB050hkYwW1AlIaUUpRoFU0dAWgWR0CRx4xL0z0pdX2UKGgGaAloD0MIEHo2q/6vcUCUhpRSlGgVTSMBaBZHQJHHlhb4agp1fZQoaAZoCWgPQwge+YOBZyRwQJSGlFKUaBVNIAJoFkdAkceqt9x6wHV9lChoBmgJaA9DCKEuUijLOnFAlIaUUpRoFU0PAWgWR0CRx94C6pYLdX2UKGgGaAloD0MIKSLDKl6WcECUhpRSlGgVTSwBaBZHQJHJZdX1ant1fZQoaAZoCWgPQwgmUwWjkv9uQJSGlFKUaBVNGwFoFkdAkcl/nbItDnV9lChoBmgJaA9DCMnlP6QfDHJAlIaUUpRoFU0LAWgWR0CRysMEzO5bdX2UKGgGaAloD0MINuhLb7/jcUCUhpRSlGgVTS4BaBZHQJHNaeMAFPl1fZQoaAZoCWgPQwjJO4cy1MFwQJSGlFKUaBVNeQFoFkdAkc8EiQkonnV9lChoBmgJaA9DCIWWdf9YE3FAlIaUUpRoFUvvaBZHQJHQCerdWQx1fZQoaAZoCWgPQwh5rYTuEmRsQJSGlFKUaBVNDAFoFkdAkdAtQsPJ73V9lChoBmgJaA9DCI6xE16Cz3BAlIaUUpRoFU1HAWgWR0CR0F+o99tudX2UKGgGaAloD0MIZR2OrhLJcECUhpRSlGgVS/5oFkdAkdCqp97Wu3V9lChoBmgJaA9DCPAWSFD8MHNAlIaUUpRoFU05AWgWR0CR0cxz7uUmdX2UKGgGaAloD0MIeLZHbzj6cUCUhpRSlGgVTTEBaBZHQJHTDQID5j91fZQoaAZoCWgPQwi932jHjZRyQJSGlFKUaBVNOwFoFkdAkdMsqSX+l3V9lChoBmgJaA9DCKBSJcreTXJAlIaUUpRoFU0NAWgWR0CR04hew9q2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a52e3d75f86976511bae2477c738b96261d99c2fe995dfa3568482c9321013e2
3
+ size 147412
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd8e6a0a820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd8e6a0a8b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd8e6a0a940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd8e6a0a9d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd8e6a0aa60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd8e6a0aaf0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd8e6a0ab80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd8e6a0ac10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd8e6a0aca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd8e6a0ad30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd8e6a0adc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd8e6a0ae50>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fd8e6a058a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673477163591251632,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADczby/7Kk/Eu+8vi4GD7/RmWM8oAjtPAAAAAAAAAAATSRhPXsejrqBuya5fBoatCu61TomgkE4AACAPwAAgD9mjbs9x76xP3+IBT/SCYa+JtqGPVFmiT4AAAAAAAAAAMCKgj17vIm6BBw8M1XxUivNJyC7nlHNswAAgD8AAIA/mgHZuxQ4nLpYW962xNzFsAeGtrobGP41AACAPwAAgD/mQk8+gSr2vLJEijrd5h+5ADBbvoAKvbkAAIA/AACAP+a4zD1SYpm7TjPIvH7AnzwRuOm8QtKHPQAAAAAAAIA/YGRWPjqhJj9eLH+9JFKyvoGmfD21bqK9AAAAAAAAAACtxz8+JCalPvrCe77xvGG+HYhzvTIywLwAAAAAAAAAAHZaqb4Qy6M/aFkbv9UnCL/2aJS+8tVKvQAAAAAAAAAAE5cCvpn8kT/GFyC/E24ev4hMj71srj++AAAAAAAAAACm04E9KSgUP+BKU72llpG+XMIAvb2E6r0AAAAAAAAAAFp1vj3OxsI+0M/lPG17lL70V0095QPkPAAAAAAAAAAAIunCviYAFz/cpa29ABOlvuwfgL7ipTY9AAAAAAAAAAANa7K9wwUSuoYviDmyYAM2ls5wu5rWtbgAAIA/AAAAAOaRIL1i81o/DSuyvZ6/tr7ibWW9U+gJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYaWCiionb0CUhpRSlIwBbJRNJQGMAXSUR0CRciCAtnPFdX2UKGgGaAloD0MISdv4E9WickCUhpRSlGgVTSoBaBZHQJF1Uqz7di51fZQoaAZoCWgPQwgo0ZLHU5drQJSGlFKUaBVNKAFoFkdAkXZhtUGVzXV9lChoBmgJaA9DCAytTs6Q9HFAlIaUUpRoFU0WAWgWR0CReAuB+WnkdX2UKGgGaAloD0MIem8MAcBpXkCUhpRSlGgVTegDaBZHQJF4dVDKHO91fZQoaAZoCWgPQwgIc7uXO+5xQJSGlFKUaBVNOgFoFkdAkXkNm6GxlnV9lChoBmgJaA9DCLYODvam8G5AlIaUUpRoFU0vAWgWR0CReWc45tFbdX2UKGgGaAloD0MI5X6HosA6bECUhpRSlGgVTSwBaBZHQJF5mhoM8YB1fZQoaAZoCWgPQwiqm4u/7aE+QJSGlFKUaBVL72gWR0CReaw3o9s8dX2UKGgGaAloD0MIgv3Xuen9b0CUhpRSlGgVTR8BaBZHQJF5umsNlRR1fZQoaAZoCWgPQwhQ/u4d9cxyQJSGlFKUaBVNIgFoFkdAkXrNEgGKRHV9lChoBmgJaA9DCBufyf55NnJAlIaUUpRoFU0sAWgWR0CRe1iLl3hXdX2UKGgGaAloD0MIvOtsyL+nckCUhpRSlGgVTRkBaBZHQJF7nAckt291fZQoaAZoCWgPQwg6lQwA1TFwQJSGlFKUaBVNIwFoFkdAkXuvIS13MnV9lChoBmgJaA9DCOup1VdXO3FAlIaUUpRoFU0vAWgWR0CRfAN34bjtdX2UKGgGaAloD0MIsqAwKBPMcUCUhpRSlGgVTTkBaBZHQJF9kbbUPQR1fZQoaAZoCWgPQwiL+49MB5puQJSGlFKUaBVNEQFoFkdAkX7Xn2ZiNXV9lChoBmgJaA9DCI/iHHX02W5AlIaUUpRoFU1rAWgWR0CRfuD8tPHldX2UKGgGaAloD0MI3o/bL5/Rb0CUhpRSlGgVTQEBaBZHQJGAcctGus91fZQoaAZoCWgPQwjC3O7lvsFsQJSGlFKUaBVNDgFoFkdAkYFA6hg3LnV9lChoBmgJaA9DCIYb8PlhqnFAlIaUUpRoFU0RAWgWR0CRgjzoUzsQdX2UKGgGaAloD0MIilqaW2EKc0CUhpRSlGgVTSgBaBZHQJGCzsE7nxJ1fZQoaAZoCWgPQwgW26SiMYxyQJSGlFKUaBVNLAFoFkdAkYO1s54nnnV9lChoBmgJaA9DCBsOSwN/3XBAlIaUUpRoFU14AWgWR0CRg7bkOqecdX2UKGgGaAloD0MIZYnOMgt5b0CUhpRSlGgVTSwBaBZHQJGDyY4Qz1t1fZQoaAZoCWgPQwiJsreUs4VxQJSGlFKUaBVL/WgWR0CRhDlO45LidX2UKGgGaAloD0MIPu3w1+SKbUCUhpRSlGgVTT8BaBZHQJGETKOktVd1fZQoaAZoCWgPQwgMWHIVy8RxQJSGlFKUaBVNEAFoFkdAkYSPcvduYXV9lChoBmgJaA9DCKSpnsy/JHFAlIaUUpRoFU0sAWgWR0CRhOk+X7cgdX2UKGgGaAloD0MI4NVyZ6a0b0CUhpRSlGgVTS8BaBZHQJGGOHuZ1FJ1fZQoaAZoCWgPQwjX9nZL8r1vQJSGlFKUaBVNBQFoFkdAkYaceS0SiHV9lChoBmgJaA9DCFR0JJd/b25AlIaUUpRoFU1UAWgWR0CRhugte2NOdX2UKGgGaAloD0MISghW1csacECUhpRSlGgVTTcBaBZHQJGJZvS+g151fZQoaAZoCWgPQwg1CklmdUltQJSGlFKUaBVNFgFoFkdAkYnhv3rUsnV9lChoBmgJaA9DCGTmApdHhnBAlIaUUpRoFUvuaBZHQJGMNqDbrTp1fZQoaAZoCWgPQwhIbk26LSpuQJSGlFKUaBVNIQFoFkdAkYw5ON5t33V9lChoBmgJaA9DCHPYfcfwJ25AlIaUUpRoFU0lAWgWR0CRjPa11GLDdX2UKGgGaAloD0MISWk2j0PscUCUhpRSlGgVTQ8BaBZHQJGNfaK1og51fZQoaAZoCWgPQwhJaTaPwwtuQJSGlFKUaBVNIAFoFkdAkY2TRD1GsnV9lChoBmgJaA9DCJwXJ75aN3BAlIaUUpRoFU0yAWgWR0CRjj4+r2g4dX2UKGgGaAloD0MI+cCO/0LVcUCUhpRSlGgVTSwBaBZHQJGO997Wuox1fZQoaAZoCWgPQwje5LfopHVwQJSGlFKUaBVNgwFoFkdAkY8AemvW6XV9lChoBmgJaA9DCNGUnX6QzHJAlIaUUpRoFU0ZAWgWR0CRkCB4Uvf1dX2UKGgGaAloD0MIxxLWxlgrc0CUhpRSlGgVTUYBaBZHQJGQL4j8k2R1fZQoaAZoCWgPQwgTgH9KFZFxQJSGlFKUaBVNKgFoFkdAkZERE4Nqg3V9lChoBmgJaA9DCIhp39wf4XBAlIaUUpRoFU0mAWgWR0CRkUM36yjYdX2UKGgGaAloD0MIchdhinLwcECUhpRSlGgVTY4BaBZHQJGRUdXDFZR1fZQoaAZoCWgPQwi9HeG04PNuQJSGlFKUaBVNBQFoFkdAkZMOpS75EnV9lChoBmgJaA9DCHv2XKZmoHBAlIaUUpRoFU0/AWgWR0CRq5HlwLmZdX2UKGgGaAloD0MIKy/5n/yFcUCUhpRSlGgVTRQBaBZHQJGtajTKDCh1fZQoaAZoCWgPQwhE2zF1V7hJQJSGlFKUaBVL62gWR0CRrgWlMyrQdX2UKGgGaAloD0MICYuKOF0ucECUhpRSlGgVTTABaBZHQJGvHpW3jMp1fZQoaAZoCWgPQwjLgR5qW3lvQJSGlFKUaBVNIgFoFkdAkbA9xEORT3V9lChoBmgJaA9DCAe139oJ83JAlIaUUpRoFU0mAWgWR0CRsF8zyjHodX2UKGgGaAloD0MI0LaadQacckCUhpRSlGgVTSABaBZHQJGx4j0L+gl1fZQoaAZoCWgPQwh3oblOI41xQJSGlFKUaBVNLwFoFkdAkbJ+y7f513V9lChoBmgJaA9DCGuA0lCj5nFAlIaUUpRoFU0OAWgWR0CRsqXvH93sdX2UKGgGaAloD0MIcZF7urpibkCUhpRSlGgVTXcBaBZHQJGzLIdU83d1fZQoaAZoCWgPQwgg1EUKZZhtQJSGlFKUaBVNGAFoFkdAkbQ8BMi8nXV9lChoBmgJaA9DCAWHF0TkDXFAlIaUUpRoFUv5aBZHQJG1SN+9all1fZQoaAZoCWgPQwijsfZ3tglxQJSGlFKUaBVNbAFoFkdAkbYJb+tKZnV9lChoBmgJaA9DCLe3W5ID5HJAlIaUUpRoFU1HAWgWR0CRthOsDGLldX2UKGgGaAloD0MIaHizBi/HcUCUhpRSlGgVTQMBaBZHQJG5lDJEH+t1fZQoaAZoCWgPQwiMvoI0YzpuQJSGlFKUaBVNUAFoFkdAkbp56IFeOXV9lChoBmgJaA9DCOmBj8EKLG1AlIaUUpRoFU0HAWgWR0CRuptPHktFdX2UKGgGaAloD0MI8aDZde/rcUCUhpRSlGgVTRIBaBZHQJG7JInSfDl1fZQoaAZoCWgPQwjg9gSJ7axaQJSGlFKUaBVN6ANoFkdAkbvs3Mpw0nV9lChoBmgJaA9DCDDxR1FnD3JAlIaUUpRoFU1XAWgWR0CRvFmbLEDRdX2UKGgGaAloD0MIs0P8wxYmbUCUhpRSlGgVTRwBaBZHQJG87GT9sJp1fZQoaAZoCWgPQwiKc9TRsfRwQJSGlFKUaBVNCQFoFkdAkbz0th/iHnV9lChoBmgJaA9DCJxOstVl6nJAlIaUUpRoFU11AWgWR0CRvSK5kK/mdX2UKGgGaAloD0MI6Qsh530cbECUhpRSlGgVTSoBaBZHQJG97Egntv51fZQoaAZoCWgPQwgogjgP55VxQJSGlFKUaBVNDQFoFkdAkb6CF0xM4HV9lChoBmgJaA9DCA3iAzs+13FAlIaUUpRoFU0/AmgWR0CRvyDzAeq8dX2UKGgGaAloD0MINzemJ+y4ckCUhpRSlGgVTSkBaBZHQJHA9e3QUpN1fZQoaAZoCWgPQwicbAN3oPBuQJSGlFKUaBVNLAFoFkdAkcEbZrYXf3V9lChoBmgJaA9DCKBOeXQjTE1AlIaUUpRoFUveaBZHQJHCYcGTs6d1fZQoaAZoCWgPQwjWxW00APpvQJSGlFKUaBVNFwFoFkdAkcO51ie/YnV9lChoBmgJaA9DCB+94T5yv3FAlIaUUpRoFUv/aBZHQJHEMoc7yQR1fZQoaAZoCWgPQwhqZ5ja0iVvQJSGlFKUaBVNHwFoFkdAkcZb6Hj6vnV9lChoBmgJaA9DCFr1udoKI3FAlIaUUpRoFU0XAWgWR0CRxoFH8TBZdX2UKGgGaAloD0MIYcWp1sJGc0CUhpRSlGgVTUgBaBZHQJHGoVzp5eJ1fZQoaAZoCWgPQwi5x9KHrg1zQJSGlFKUaBVNIAFoFkdAkcdvACW/rXV9lChoBmgJaA9DCB050hkYwW1AlIaUUpRoFU0dAWgWR0CRx4xL0z0pdX2UKGgGaAloD0MIEHo2q/6vcUCUhpRSlGgVTSMBaBZHQJHHlhb4agp1fZQoaAZoCWgPQwge+YOBZyRwQJSGlFKUaBVNIAJoFkdAkceqt9x6wHV9lChoBmgJaA9DCKEuUijLOnFAlIaUUpRoFU0PAWgWR0CRx94C6pYLdX2UKGgGaAloD0MIKSLDKl6WcECUhpRSlGgVTSwBaBZHQJHJZdX1ant1fZQoaAZoCWgPQwgmUwWjkv9uQJSGlFKUaBVNGwFoFkdAkcl/nbItDnV9lChoBmgJaA9DCMnlP6QfDHJAlIaUUpRoFU0LAWgWR0CRysMEzO5bdX2UKGgGaAloD0MINuhLb7/jcUCUhpRSlGgVTS4BaBZHQJHNaeMAFPl1fZQoaAZoCWgPQwjJO4cy1MFwQJSGlFKUaBVNeQFoFkdAkc8EiQkonnV9lChoBmgJaA9DCIWWdf9YE3FAlIaUUpRoFUvvaBZHQJHQCerdWQx1fZQoaAZoCWgPQwh5rYTuEmRsQJSGlFKUaBVNDAFoFkdAkdAtQsPJ73V9lChoBmgJaA9DCI6xE16Cz3BAlIaUUpRoFU1HAWgWR0CR0F+o99tudX2UKGgGaAloD0MIZR2OrhLJcECUhpRSlGgVS/5oFkdAkdCqp97Wu3V9lChoBmgJaA9DCPAWSFD8MHNAlIaUUpRoFU05AWgWR0CR0cxz7uUmdX2UKGgGaAloD0MIeLZHbzj6cUCUhpRSlGgVTTEBaBZHQJHTDQID5j91fZQoaAZoCWgPQwi932jHjZRyQJSGlFKUaBVNOwFoFkdAkdMsqSX+l3V9lChoBmgJaA9DCKBSJcreTXJAlIaUUpRoFU0NAWgWR0CR04hew9q2dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acf6d0331a5bd7bcabf14819190813e513715a5aafe6b7010ae2b3715ff76638
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7644f8202c4a5bd6107724a74060defc4517d10086feb7d2ac5e5727e28112a7
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (245 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.771774938095, "std_reward": 17.716384307323935, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T23:07:25.143946"}