File size: 15,642 Bytes
c344d9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import re
import joblib
import pickle
import numpy as np
import pandas as pd
import tensorflow as tf
from typing import Optional, Union, Tuple
from gensim.models import Word2Vec
from transformers import BertTokenizer
from transformers import BertForSequenceClassification, Trainer, TrainingArguments, BertModel
from transformers.modeling_outputs import SequenceClassifierOutput
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import torch.nn.functional as F

import torch
import time
from torch import nn
from transformers import Trainer
from transformers import AutoModel, AutoTokenizer
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

NUM_CLASSES = 3  # λΆ„λ₯˜ 클래슀 수
DROP_OUT = 0.3  # μ›ν•˜λŠ” dropout ν™•λ₯ 

class SentimentDataset(torch.utils.data.Dataset):
  def __init__(self, encodings, labels=None):
    self.encodings = encodings
    self.labels = labels

  def __getitem__(self, idx):
    item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
    if self.labels:
      item['labels'] = torch.tensor(self.labels[idx])
    return item

  def __len__(self):
    return len(self.encodings["input_ids"])

class CustomBertForSequenceClassification(BertForSequenceClassification):

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        self.bert = BertModel(config)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)

        # ν•˜κΈ° λ°©μ‹μœΌλ‘œ λŒ€μ²΄ν•œλ‹€.
        #self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # https://github.com/KisuYang/EmotionX-KU/blob/master/models.py
        self.linear_h = nn.Linear(config.hidden_size, 384)
        self.linear_o = nn.Linear(384, config.num_labels)
        self.selu = nn.SELU()

        print("hidden_size:", config.hidden_size, "num_lables:", config.num_labels)

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        # outputs[0]: batch_size(16), feature_size(38), hidden_size(768)
        # outputs[1]: batch_size(16), hidden_size(768)

        # BertModel 의 좜λ ₯쀑 Pooled Output 좜λ ₯을 μ·¨ν•œλ‹€.
        pooled_output = outputs[1]

        # Dropout 전에 https://github.com/KisuYang/EmotionX-KU/blob/master/models.py λ°©μ‹μœΌλ‘œ λ ˆμ΄μ–΄λ₯Ό μΆ”κ°€ν•œλ‹€.
        pooled_output = self.selu(self.linear_h(pooled_output))

        # Dropout 적용
        pooled_output = self.dropout(pooled_output)

        # Linear layerλ₯Ό ν†΅κ³Όμ‹œμΌœ num_labels 에 ν•΄λ‹Ήν•˜λŠ” 좜λ ₯을 μƒμ„±ν•œλ‹€.
        #logits = self.classifier(pooled_output)
        logits = self.linear_o(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

def train_model(model_name, X_train, X_test, y_train, y_test, epochs=2, train_batch_size=8, eval_batch_size=16, use_emotion_x=False):

  tokenizer = BertTokenizer.from_pretrained(model_name)

  train_encodings = tokenizer(X_train, truncation=True, padding=True)
  train_dataset = SentimentDataset(train_encodings, y_train)

  test_encodings = tokenizer(X_test, truncation=True, padding=True)
  test_dataset = SentimentDataset(test_encodings, y_test)

  print(train_dataset[1]['input_ids'].shape)
  print(train_dataset[1]['attention_mask'].shape)

  training_args = TrainingArguments(
    output_dir='./results', # output μ €μž₯ directory
    num_train_epochs=epochs,     # total number of training epochs
    per_device_train_batch_size=train_batch_size, # batch size per device during training
    per_device_eval_batch_size=eval_batch_size, # batch size per device during evaluation
    warmup_steps = 500,            # number of warmup steps for learning rate scheduler
    weight_decay = 0.01,           # weight decay 강도
    logging_dir='./logs',          # log μ €μž₯ directory
    logging_steps=10,
    do_eval=True
  )

  if use_emotion_x == True:
    model = CustomBertForSequenceClassification.from_pretrained(model_name, num_labels=NUM_CLASSES).to('cuda')
  else:
    model = BertForSequenceClassification.from_pretrained(model_name, num_labels=NUM_CLASSES).to('cuda')

  trainer = Trainer(
      model = model,
      args = training_args,
      train_dataset = train_dataset,
      eval_dataset = test_dataset
  )

  s = time.time()

  trainer.train()

  trainer.evaluate(test_dataset)

  prediction = trainer.predict(test_dataset)

  y_logit = torch.tensor(prediction[0])

  y_pred = F.softmax(y_logit, dim=-1).argmax(axis=1).numpy()

  print(classification_report(y_test, y_pred))
  print(confusion_matrix(y_test, y_pred))
  print(accuracy_score(y_test, y_pred))

  return trainer , tokenizer

  
def test_trainer(trainer, tokenizer):
  POSITIVE = 0
  NEGATIVE = 1
  NEUTRAL = 2

  idx_to_label = {POSITIVE:'positive', NEGATIVE:'negative', NEUTRAL:'neutral'}


  test_dict = {
      '였늘 짜증 μ§€λŒ€λ‘œλ„€': NEGATIVE,
      '톡μž₯이 ν……ν…… λΉ„μ—ˆμŒ': NEGATIVE,
      '경제 사정이 μ’€ λ‚˜μ•„μ Έμ„œ μ’‹λ„€μš”': POSITIVE,
      'κ΅­κ°€κ°„ 관계가 μ•…ν™”λ˜κ³  μžˆμ–΄μš”': NEGATIVE,
      'ν•œκ΅­κ³Ό 일본은 사이가 μ•ˆμ’‹μ•„μš”.': NEGATIVE,
      'μ‹€νŒ¨λŠ” μ„±κ³΅μ˜ μ–΄λ¨Έλ‹ˆμ΄λ‹€.': POSITIVE,
      '날씨가 λ”°λœ»ν•΄μ„œ 마음이 νŽΈμ•ˆν•΄μš”.': POSITIVE,
      'μ£Όλ¨Έλ‹ˆ 사정이 νŒŒμ‚° μ§μ „μž„' : NEGATIVE,
      'λ„ˆλ¬΄ 걱정말고 νž˜λ‚΄!' : POSITIVE,
      'μ•„ μ§„μ§œ! μ§œμ¦λ‚˜κ²Œ ꡴지말고 저리가!' : NEGATIVE,
      '인생이 ν”Όκ³€ν•˜λ‹€.' : NEGATIVE,
      'λ”°λœ»ν•œ 말씀 κ°μ‚¬ν•©λ‹ˆλ‹€.' :POSITIVE,
      '바보같은 λ†ˆλ“€ ν•œμ‹¬ν•˜λ„€' :NEGATIVE,
      'κ·Έ 말이 μ €λ₯Ό λ„ˆλ¬΄ νž˜λ“€κ²Œ ν•˜λ„€μš”' : NEGATIVE,
      'μšΈμ§€λ§κ³  νž˜λ‚΄':POSITIVE,
      '눈물이 λ©ˆμΆ”μ§ˆ μ•Šμ•„μš”':NEGATIVE,
      'μƒˆλ‘œμš΄ 사μž₯λ‹˜μ€ 진취적인 뢄이라 κΈ°λŒ€κ°€ λœλ‹€':POSITIVE,
      '였늘 할일이 νƒœμ‚°μ΄λ„€':NEUTRAL,
      '할일이 λ„ˆλ¬΄ λ§Žμ§€λ§Œ κΎΈμ—­κΎΈμ—­ ν•˜κ³  μžˆμ–΄':NEUTRAL,
      'λ°°κ°€ κ³ ν”„λ„€μš”':NEUTRAL,
      '집에 κ°€κ³  μ‹Άλ„€μš”':NEUTRAL,
      'μ½”μ½”μ•„ ν•œμž” ν•˜μ‹€λž˜μš”?':NEUTRAL,
      '컴퓨터 λ°”κΏ”μ£Όμ„Έμš”.':NEUTRAL,
      'ν•œλŒ€ λ§žμ„λž˜?': NEGATIVE,
      'μ‹ λ‚˜λŠ” 여행을 μƒκ°ν•˜λ‹ˆ 기뢄이 μ’‹μŠ΅λ‹ˆλ‹€':POSITIVE,
      'λ°°κ³ ν”ˆλ° λ°₯이 μ—†μ–΄μš”.':NEGATIVE,
      'κ΅­κ°€ κ²½μ œκ°€ νŒŒνƒ„ λ‚˜λŠ” 쀑이닀.':NEGATIVE,
      'λ„ˆλ•Œλ¬Έμ— λ‚΄κ°€ λ„ˆλ¬΄ νž˜λ“€μ–΄':NEGATIVE,
      'κ·Έλž˜λ„ λ‹ˆκ°€ μžˆμ–΄μ„œ 닀행이야':POSITIVE,
      'μ•”μšΈν•œ 경제 사정에도 μ—΄μ‹¬νžˆ ν•΄μ€˜μ„œ κ³ λ§ˆμ›Œμš”':POSITIVE,
      '였늘 κΈ°λΆ„ μ§±μ΄μ—μš”':POSITIVE,
      'λ„ˆλŠ” λŒ€μ²΄ ν•  쀄 μ•„λŠ”κ²Œ λ­λ‹ˆ?':NEGATIVE,
      'μˆ™μ œκ°€ λ„ˆλ¬΄ μ–΄λ €μ›Œ λ―ΈμΉ˜κ² λ‹€':NEGATIVE,
      '우리 νŒ€μ›λ“€ μ—΄μ‹¬νžˆ ν•΄μ€˜μ„œ μžλž‘μŠ€λŸ½μŠ΅λ‹ˆλ‹€':POSITIVE,
      'Wow! μ˜ν™” μ§„μ§œ μž¬λ―Έμžˆλ„€':POSITIVE,
      'γ… γ…  νž˜λ“€μ–΄ 죽을거 κ°™μ•„μš”':NEGATIVE,
      '이번 μ—¬ν–‰μ½”μŠ€λŠ” 정말 ν™˜μƒμ μ΄λ„€μš”':POSITIVE,
      'λ‹΅λ‹΅ν•œ μƒν™©μ΄μ§€λ§Œ λ„Œ 이겨낼 수 μžˆμ„κΊΌμ•Ό':POSITIVE,
      'λ‹΅λ‹΅ν•œ μƒν™©μ΄μ§€λ§Œ λ„Œ 잘 ν•΄λ‚Ό 수 μžˆμ„κΊΌμ•Ό':POSITIVE,
      'μ–Έμ œλ‚˜ 곁에 μžˆμ–΄μ€˜μ„œ 힘이 λ©λ‹ˆλ‹€.':POSITIVE,
      'λͺΈμ΄ λ„ˆλ¬΄ μ•„νŒŒμ„œ 일이 손에 μ•ˆμž‘ν˜€μš”':NEGATIVE,
      'λ„ˆ 정말 μž˜ν•œλ‹€ λ¦¬μŠ€νŽ™!':POSITIVE,
      'μŠ¬ν”„μ§€λ§Œ κ΄œμ±¦μ•„':POSITIVE,
      'κ°œλΉ‘μΉ˜λ„€ μ§„μ§œ':NEGATIVE,
      'λΉ„κ°€ λ„ˆλ¬΄ 많이 μ™€μ„œ 집이 λ– λ‚΄λ €κ°”μ–΄μš”':NEGATIVE,
      '햇빛이 μ¨μ¨ν•΄μ„œ 옷이 잘 마λ₯΄λ„€μš”':POSITIVE,
      'AIκ³΅λΆ€λŠ” μ–΄λ ΅μ§€λ§Œ μž¬λ―Έμžˆμ–΄μš”':POSITIVE,
      '널 μ–΄μ©Œλ©΄ 쒋냐? ν•œμˆ¨λ°–μ— μ•ˆλ‚˜μ˜¨λ‹€':NEGATIVE,
      'λ„λŒ€μ²΄ 무슨 μƒκ°μœΌλ‘œ 이런 짓을 ν•œκ±°μ•Ό?':NEGATIVE,
      'λ―Έμ›Œλ„ λ‹€μ‹œ ν•œλ²ˆ':POSITIVE,
      '도움 말씀 κ°μ‚¬ν•©λ‹ˆλ‹€':POSITIVE,
      '말도 μ•ˆλ˜λŠ” μ†Œλ¦¬ κ·Έλ§Œν•˜κ³  저리가':NEGATIVE,
      '였늘 컀피챗 λΆ„μœ„κΈ° κ΅Ώ':POSITIVE,
      'κΈ°λΆ„ λ‚˜λΉ μ„œ λ„ˆλž‘ μ–˜κΈ°ν•˜κΈ° μ‹«μ–΄':NEGATIVE,
      '이 κ·Έλ¦Ό λ„ˆλ¬΄ λ§ˆμŒμ— λ“ λ‹€':POSITIVE,
      '어이가 μ—†μ–΄μ„œ ν•  말이 μ—†μ–΄':NEGATIVE,
      'λ™λ£Œ 직원이 퇴사 인사λ₯Ό ν–ˆλŠ”λ° μ”μ“Έν•œ 마음이 λ“œλ„€':NEGATIVE,
      'νŒ€μ›μ΄ 아이디어 κ²€ν† λ₯Ό μš”μ²­ν–ˆλŠ”λ° λ„ˆλ¬΄ 쒋은 아이디어 κ°™μ•„. μ˜κ²¬μ„ λ¬Όμ–΄λ΄μ€˜μ„œ κ³ λ§ˆμ›Œ':POSITIVE,
      '성격이 쒋은 νŒ€μ›λ“€κ³Ό ν•¨κ»˜ ν•  수 μžˆμ–΄μ„œ 닀행이야':POSITIVE,
      'κΈˆμš”μΌλ§Œ 되면 기뢄이 μ’‹μ•„μ Έ':POSITIVE,
      '벌써 μΌμš”μΌμ΄λΌλ‹ˆ μΆœκ·Όν•  μƒκ°ν•˜λ‹ˆ κΈ‰ λ‹€μš΄λœλ‹€.':NEGATIVE,
      'μ§œμ¦λ‚˜λ‹ˆκΉŒ μ–˜κΈ°ν•˜μ§€λ§ˆ!':NEGATIVE,
      'λ„ˆλ¬΄ 심심해.':NEUTRAL,
      'λ˜‘λ˜‘ν•œ μ‚¬λžŒμ΄λž‘ λŒ€ν™”ν•˜λŠ”κ±΄ μ¦κ±°μ›Œμš”':POSITIVE,
      '당신은 항상 μ›ƒλŠ” μ–Όκ΅΄μ΄μ–΄μ„œ λ§Œλ‚˜λ©΄ 기뢄이 μ’‹μ•„μ Έμš”':POSITIVE,
      '연섀이 λ„ˆλ¬΄ λ”°λΆ„ν•΄μ„œ ν•˜ν’ˆμ΄ λ‚˜μ™€μš”':NEGATIVE,
      'λ§›μžˆλŠ” 식당에 갈 생각을 ν•˜λ‹ˆ μ‹ λ‚˜μš”':POSITIVE,
      '이런 ν›Œλ₯­ν•œ κ°•μ˜λ₯Ό λ“£κ²Œ λ˜μ„œ μ˜κ΄‘μž…λ‹ˆλ‹€.':POSITIVE,
      'λ§Œλ‚˜λ΅™κ²Œ λ˜μ„œ λ°˜κ°‘μŠ΅λ‹ˆλ‹€.':POSITIVE,
      'κ·Έ μ‚¬λžŒλ§Œ λ§Œλ‚˜λ©΄ 짜증이 λ‚˜μ„œ 보기가 μ‹«μ–΄':NEGATIVE,
      '아이듀이 ν™œκΈ°μ°¨κ²Œ λ›°μ–΄λ…ΈλŠ” λͺ¨μŠ΅μ΄ 보기 μ’‹μ•„μš”':POSITIVE,
      'ν•œμ‹¬ν•œ μ†Œλ¦¬μ’€ κ·Έλ§Œν•  수 μ—†μ–΄μš”?':NEGATIVE,
      '웃기고 μžλΉ μ‘Œλ„€!':NEGATIVE,
      '휴! μ‹­λ…„ κ°μˆ˜ν–ˆλ„€!':NEUTRAL,
      '말같지도 μ•Šμ€ μ†Œλ¦¬ν•˜κ³  μžˆμ–΄! γ……γ…‚':NEGATIVE,
      'μž…μ—μ„œ μš•μ΄ μžλ™μœΌλ‘œ λ‚˜μ˜¨λ‹€...':NEGATIVE,
      'μž…λ§Œ μ—΄λ©΄ 거짓말이 μžλ™μœΌλ‘œ λ‚˜μ™€!':NEGATIVE,
      'μ €κ±° 바보 아냐?':NEGATIVE,
      'νž˜λ“€λ•Œ 곁에 μžˆμ–΄μ€˜μ„œ κ³ λ§ˆμ›Œ':POSITIVE,
      '아이큐가 μ†Œμˆ«μ  μ΄ν•˜ κ°™μ•„':NEGATIVE,
      'μ €λŸ° λͺ¨μ§€λ¦¬ κ°™μœΌλ‹ˆλΌκ³ ':NEGATIVE,
      '지지리 λͺ»λ‚œ λ†ˆ':NEGATIVE,
      'μ € 인간 λ•Œλ¬Έμ— λ‚΄κ°€ 제 λͺ…에 λͺ»μ‚΄κ²ƒ κ°™μ•„':NEGATIVE,
      'μ € μƒˆλΌ μ£½μ—¬':NEGATIVE,
      'λ„Œ 정말 μ²œμ‚¬κ°™μ•„':POSITIVE,
      '당신이 μ’‹μ•„μš” 항상 곁에 μžˆμ–΄μ£Όμ„Έμš”':POSITIVE,
      '꼴도 보기 μ‹«μœΌλ‹ˆ 썩 κΊΌμ Έ':NEGATIVE,
      'μ•„ μ§„μ§œ λŒμ•„λ²„λ¦¬κ² λ„€':NEGATIVE,
      'μ—­κ²¨μš΄ λ†ˆλ“€':NEGATIVE,
      'μ €λŸ° 미인을 λ³΄λ‹ˆ μ•ˆκ΅¬κ°€ μ •ν™”λ˜λŠ” λŠλ‚Œμ΄μ•Ό':POSITIVE,
      'μ•„μ˜€ γ……γ…‚ 눈 μ©λŠ”λ‹€':NEGATIVE,
      'κΉμΉ˜μ§€λ§ˆ λ’€μ§ˆλž˜?':NEGATIVE,
      'μ–Έμ œλ“  ν™˜μ˜μ΄μ—μš”':POSITIVE,
      '쀘 νŒ¨λ²„λ¦¬κ³  μ‹Άλ„€ μ§„μ§œ':NEGATIVE,
      'μ• κΈ°λ§Œ 보면 μ›ƒμŒμ΄ λ‚˜μ™€':POSITIVE,
      'ν•˜λŠ” 짓 보면 μ €λŠ₯μ•„ κ°™μ•„':NEGATIVE,
      '칭챙좍':NEGATIVE,
      '왓더뻑':NEGATIVE,
      '이 λΉ‘λŒ€κ°€λ¦¬μ•Ό':NEGATIVE,
      'λŒλŒ€κ°€λ¦¬ μžμ‹':NEGATIVE,
      'λ„ˆλ„ μžμ‹μ΄λΌκ³  낳은 λ‹ˆ μ—„λ§ˆκ°€ 뢈쌍':NEGATIVE,
      '예쁜 κ³΅μ£Όλ‹˜μ΄μ—μš” μΆ•ν•˜ν•΄μš”':POSITIVE,
      'μ”©μ”©ν•œ μ™•μžλ‹˜μ΄μ—μš”. μ’‹μœΌμ‹œκ² μ–΄μš”.':POSITIVE,
      '얼씨ꡬ μ’‹λ‹€':POSITIVE,
      'ν•˜λŠ˜μ΄ λ¬΄λ„ˆμ§€λŠ” 기뢄이야':NEGATIVE,
      'ν•˜λŠ˜μ„ λ‚˜λŠ” 기뢄이야':POSITIVE,
      'μ•„μžμ•„μž ν™”μ΄νŒ…!':POSITIVE,
      'κ°œμƒˆλΌ':NEGATIVE,
      'μ•„μ£Ό λ‚˜μ΄μŠ€':POSITIVE,
      '닡도 μ—†λŠ” 인간듀':NEGATIVE,
      '정말 μ—¬κΈ΄ μ €λŠ₯μ•„ 집단 κ°™μ•„':NEGATIVE,
      'λ§Œλ‚˜μ„œ λ°˜κ°€μ›Œμš”. 정말 λ―ΈμΈμ΄μ‹œλ„€μš”':POSITIVE,
      '당신이 κ·Έλ¦¬μ›Œμš”. λ³΄κ³ μ‹Άμ–΄μš”.':POSITIVE,
      'λ°”λΌλ§Œ 봐도 μ›ƒμŒμ΄ λ‚˜μ™€μš”':POSITIVE,
      '개 μ—΄λ°›λ„€':NEGATIVE,
      'λ ˆμ•Œ λŒ€λ°• γ…‹γ…‹γ…‹':POSITIVE,
      'λ„ˆλ¬΄ λ³΄κ³ μ‹Άμ—ˆμ–΄μš”. μ΄λ ‡κ²Œ λ§Œλ‚˜κ²Œλ˜μ„œ λ°˜κ°‘μŠ΅λ‹ˆλ‹€.':POSITIVE,
      'μΉœκ΅¬μ•Ό μ‚¬λž‘ν•΄':POSITIVE,
      '이 바보 μžμ‹μ•„':NEGATIVE,
      'μ˜€λŠ˜μ€ 날씨가 μ°Έ μ’‹λ„€μš”. 기뢄이 μƒμΎŒν•΄μš”.':POSITIVE,
      'μ†μƒν•΄μ„œ λ°₯이 μ•ˆλ„˜μ–΄κ°„λ‹€.': NEGATIVE,
      '마음이 μšΈμ ν•΄μ„œ 길을 λ‚˜μ„°λ„€':NEGATIVE,
      'μ˜€λŠ˜μ€ 인생 졜고의 λ‚ ': POSITIVE,
      '이 ν›Œλ₯­ν•œ 일에 λ™μ°Έν•˜κ²Œ λ˜μ„œ μ˜κ΄‘μž…λ‹ˆλ‹€.':POSITIVE,
      'λ‚˜ μ§‘μ—μ„œ μžλŠ” 쀑':NEUTRAL,
  }

  hit_cnt = 0
  tot_cnt = len(test_dict)

  for x, y in test_dict.items():
    tokenized = tokenizer([x], truncation=True, padding=True)
    pred = trainer.predict(SentimentDataset(tokenized))

    logit = torch.tensor(pred[0])
    result = F.softmax(logit, dim=-1).argmax(1).numpy()

    if result[0] != y:
      print(f"ERROR: {x}  expected:{idx_to_label[y]}  result:{idx_to_label[result[0]]}")
    else:
      hit_cnt += 1

  print()
  print(f"hit/total: {hit_cnt}/{tot_cnt}, rate: {hit_cnt/tot_cnt}")