wooihen commited on
Commit
5169ac7
1 Parent(s): e8d34eb

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1161.19 +/- 177.02
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97a021f0a455eddfe489c6690f6b100bba63aa6ec22420d9534dd32b7f9f46b2
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff727cd3670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff727cd3700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff727cd3790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff727cd3820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff727cd38b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff727cd3940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff727cd39d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff727cd3a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff727cd3af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff727cd3b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff727cd3c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff727cd3ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7ff727cd12a0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675609172008154112,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKnJ6D0WoPS+HRIqPyXsiD/UgJi+N346wBk3Cz6IiaK/Z6aKPqpstz9RM8o/cnEnPzTXhb8sHgXAzLXLPrYxuj+cnx0/yGGdv5NTMT+1+UBAodw5PjId5j8QJQm/5nBlv4eNbD/BOO8+47pFwI31tr8jMCU/umZ9P7WBJ76BqHs7teeAP7JPkL2qm9C9cuIrv+xeTr9OFq0/pffnP6mceT6zJYc/qeSgP8Du6D6u8Os+dCc5Pgsqpz/68oc9Q6kcPSdgX7+TBlS9/zSBP9Ym1L2HjWw/wTjvPuO6RcCdGTM/F9/TPmp5pb9+Aog+fPuQP3FVLz7SQY8/IVBnv5/PAcBstDI/8SNvvzdhoD8SFzi/2vHEvzQV1Dt33SQ/0EXBvyJYdL5L0si/dQ1MPzdVdL5qX8I/wwLNvqQQ9b78nJQ/h41sP0D6CMCMuKU+jfW2v1N/uj7ftYa+EKcrP5S9kT/Pbr4++nwvvYdVYz777oW/tmp/PnNakL0pB/A/x1AGPzoLgr9Ws4Y/u2BMvhN1LsAVCH6+J0ahPnHYUT8JNn29LUfgPkyTF8Didws/4Ga1P4eNbD/BOO8+jLilPo31tr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaSLs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJ7hoPQAAAABO3fi/AAAAAFouXT0AAAAAEkIAQAAAAADrZeE9AAAAADxl3z8AAAAAaCoQvgAAAADpT++/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBHpNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC+lEL4AAAAAoUzhvwAAAAAd6969AAAAAEQZAEAAAAAAwlRjvQAAAABFRPA/AAAAAJT2tb0AAAAAKB3jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA98UzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC53a+7AAAAAAzR+L8AAAAArgZivQAAAAD3Qf0/AAAAAC5zwD0AAAAATVTsPwAAAAABXMS9AAAAACZ/378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEbrq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAd7lPAAAAADFKuK/AAAAADBjVD0AAAAAU3bmPwAAAACsQ+S9AAAAANEZ9j8AAAAAm7wEvQAAAADYDQDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIdrARK6FuiMAWyUTegDjAF0lEdAqAj+aUiY9nV9lChoBkdAlHL8Lronr2gHTegDaAhHQKgJNgl4TsZ1fZQoaAZHQJGObu0CzTpoB03oA2gIR0CoCrJAMUh3dX2UKGgGR0CPEek1Mue0aAdN6ANoCEdAqA7P0dzXBnV9lChoBkdAj2Q0qYqoZWgHTegDaAhHQKgVlRTCLuR1fZQoaAZHQJGTIQmNR3xoB03oA2gIR0CoFcnpKSPmdX2UKGgGR0CRHG7x/d6+aAdN6ANoCEdAqBc/RiPQwHV9lChoBkdAkVe7xiG34WgHTegDaAhHQKgbfXe3x4J1fZQoaAZHQJHp/HaN+9doB03oA2gIR0CoIjk690zTdX2UKGgGR0CPgS44Ia99aAdN6ANoCEdAqCJv4h2W6nV9lChoBkdAkA4+DnNgSmgHTegDaAhHQKgj3c6eXiR1fZQoaAZHQJIaDhgmZ3NoB03oA2gIR0CoJ/U8V58jdX2UKGgGR0CQrgjm0VrRaAdN6ANoCEdAqC6q6BiCrnV9lChoBkdAjQNXZGrjpGgHTegDaAhHQKgu5E1EVnF1fZQoaAZHQJRP9IWgvlFoB03oA2gIR0CoMGCrksBidX2UKGgGR0CQNOWmP5pKaAdN6ANoCEdAqDSs0zj3mHV9lChoBkdAk4YBoEjgRGgHTegDaAhHQKg7gFC9h7V1fZQoaAZHQJGyOyv9tMxoB03oA2gIR0CoO7oSlFc6dX2UKGgGR0CV1J1DSgGsaAdN6ANoCEdAqD1CxmkFfXV9lChoBkdAlby8iSq2jWgHTegDaAhHQKhBhfiPyTZ1fZQoaAZHQJMkg5OrQw9oB03oA2gIR0CoSG5q/M4cdX2UKGgGR0CO7lWEsasIaAdN6ANoCEdAqEioEQoTf3V9lChoBkdAlKgBP420iWgHTegDaAhHQKhKJxhDw6R1fZQoaAZHQJS69I5HVgBoB03oA2gIR0CoTmEovzvrdX2UKGgGR0CUIwI0IkZ8aAdN6ANoCEdAqFVIPsiSq3V9lChoBkdAlfctgOSW7mgHTegDaAhHQKhVfZ6lchV1fZQoaAZHQIY0+lMyrPtoB03oA2gIR0CoVwDNY8uBdX2UKGgGR0CPJi4vN/vwaAdN6ANoCEdAqFtYjD8+A3V9lChoBkdAhrgAdXDFZWgHTegDaAhHQKhiBD9fkWB1fZQoaAZHQISJcjcEeQxoB03oA2gIR0CoYjnUlRgrdX2UKGgGR0CR+0AZsKsuaAdN6ANoCEdAqGO5zYEns3V9lChoBkdAkva3LFGXomgHTegDaAhHQKhn1wEQoTh1fZQoaAZHQJTWNWxQizNoB03oA2gIR0Cobnzg/C66dX2UKGgGR0CTAqiADq4ZaAdN6ANoCEdAqG63GyX2NHV9lChoBkdAjXoq3d9DyGgHTegDaAhHQKhwMb3oLXt1fZQoaAZHQJPk0bkwN9ZoB03oA2gIR0CodDrm6oVEdX2UKGgGR0CTHbH7gsK9aAdN6ANoCEdAqHq/FNtZWHV9lChoBkdAky7Ncry1/mgHTegDaAhHQKh69xaPjn51fZQoaAZHQJOOjGrCFbpoB03oA2gIR0CofGxzBAObdX2UKGgGR0CT9nsKb8WLaAdN6ANoCEdAqICsinpB5XV9lChoBkdAlh9HgHeJpGgHTegDaAhHQKiHSouPFNt1fZQoaAZHQJUsyAc1fmdoB03oA2gIR0Coh3yIxgy/dX2UKGgGR0CTsmtTUAktaAdN6ANoCEdAqIjozk6tDHV9lChoBkdAhtptXgccVGgHTegDaAhHQKiNHRYzSCx1fZQoaAZHQJRtjJ2dNFloB03oA2gIR0Cok7hrvb48dX2UKGgGR0CXL+TxoZhsaAdN6ANoCEdAqJPsGX5WR3V9lChoBkdAknomi5/b02gHTegDaAhHQKiVf76YVqN1fZQoaAZHQJN/EV0tAcFoB03oA2gIR0ComdPNu+AVdX2UKGgGR0CTqotgKF7EaAdN6ANoCEdAqKB9Y4hllXV9lChoBkdAl9dl8G9pRGgHTegDaAhHQKigsJj2Bat1fZQoaAZHQI0wTkCFK05oB03oA2gIR0CooiLv1DjSdX2UKGgGR0CL2J1V5rxiaAdN6ANoCEdAqKYe6/ZdwHV9lChoBkdAlIFN+5OJtWgHTegDaAhHQKispp7CzkZ1fZQoaAZHQJL5zCBPKuBoB03oA2gIR0CorNpF1B+ndX2UKGgGR0CRFwMEzO5baAdN6ANoCEdAqK5D2i+L33V9lChoBkdAlDRUuDjBEmgHTegDaAhHQKiyYQ6p5u91fZQoaAZHQJaB1JqZc9poB03oA2gIR0CouO8LKFIvdX2UKGgGR0CT5j64Ds+naAdN6ANoCEdAqLklC1JDmnV9lChoBkdAj9DwVbiZOWgHTegDaAhHQKi6tOoHcDd1fZQoaAZHQIxkzW9US7JoB03oA2gIR0CovyX1rZandX2UKGgGR0CVevcBltj1aAdN6ANoCEdAqMY9V94NZ3V9lChoBkdAkDTAwblzVGgHTegDaAhHQKjGeTHsC1Z1fZQoaAZHQJD1Bhd+ocdoB03oA2gIR0Cox/kgfU4JdX2UKGgGR0CXAX1c+qzaaAdN6ANoCEdAqMwwR02ca3V9lChoBkdAkmHK86FM7GgHTegDaAhHQKjS9mVZ9ux1fZQoaAZHQI69d5KODJ5oB03oA2gIR0Co0ywtz0YkdX2UKGgGR0CQ4xlGwzLwaAdN6ANoCEdAqNSxr1uivnV9lChoBkdAkx7r4BV+7WgHTegDaAhHQKjY2XRgJC11fZQoaAZHQJH5OUVzp5hoB03oA2gIR0Co33jRlYlqdX2UKGgGR0CSv+aAnUlSaAdN6ANoCEdAqN+qudPLxXV9lChoBkdAlXqfcrRSg2gHTegDaAhHQKjhIFUQ0411fZQoaAZHQJSOMn+hoM9oB03oA2gIR0Co5Uy4OMESdX2UKGgGR0CTYqX4j8k2aAdN6ANoCEdAqOwUCq6vq3V9lChoBkdAk2UOqvNeMWgHTegDaAhHQKjsR3cHnlp1fZQoaAZHQI5dH7xd6cBoB03oA2gIR0Co7cEFGG21dX2UKGgGR0CEisPtlZoxaAdN6ANoCEdAqPH1eyAxz3V9lChoBkdAkOjaPOpsGmgHTegDaAhHQKj40H446wN1fZQoaAZHQJGm96IFeOZoB03oA2gIR0Co+QTo+wC9dX2UKGgGR0CQzppUxVQzaAdN6ANoCEdAqPp+TC+De3V9lChoBkdAk9dgRkEs8WgHTegDaAhHQKj+nLOiWVx1fZQoaAZHQJOCGQq7ROVoB03oA2gIR0CpBVAWBSUDdX2UKGgGR0CTVDJe3QUpaAdN6ANoCEdAqQWFvES/TXV9lChoBkdAkh5tWMju8mgHTegDaAhHQKkG9mHP/rB1fZQoaAZHQJC+Bn+Q2ddoB03oA2gIR0CpCxmReTmodX2UKGgGR0CT5inw5NoKaAdN6ANoCEdAqRHADvE0i3V9lChoBkdAkkRB2OhkAmgHTegDaAhHQKkR9cbBGhF1fZQoaAZHQJFH4u/UONJoB03oA2gIR0CpE25avA45dX2UKGgGR0CI4k2phnanaAdN6ANoCEdAqReYv114gXV9lChoBkdAk54SY1He8GgHTegDaAhHQKkePuP3i711fZQoaAZHQIYci2MKkVNoB03oA2gIR0CpHnMWfseGdX2UKGgGR0CDW8VLSNOuaAdN6ANoCEdAqR/qxRl6JXV9lChoBkdAju4ILofSyGgHTegDaAhHQKkkFkzXSSh1fZQoaAZHQJIJ6YoiLVFoB03oA2gIR0CpKq6uOjqOdX2UKGgGR0CN7o+j/MnraAdN6ANoCEdAqSriad+Xq3V9lChoBkdAlcaPoaDPGGgHTegDaAhHQKksWgK4QSV1fZQoaAZHQIVGA6fapP1oB03oA2gIR0CpMIKuB+WodX2UKGgGR0CWGBkNWluWaAdN6ANoCEdAqTch3NcGDHV9lChoBkdAl14g2Ifr8mgHTegDaAhHQKk3VfpljEx1fZQoaAZHQJLSRq46Oo5oB03oA2gIR0CpOMvTw2ETdX2UKGgGR0CSxX2fChvjaAdN6ANoCEdAqTzXG4qgAnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd3b3175454f5a3afdcc294c3a1c7915aed1fc7d1a3c04729bb7f6b911e63fa5
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b678516f32530d1d68f7eda1e7db73e4ee8875380aa063dffa66838ed0f89c54
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff727cd3670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff727cd3700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff727cd3790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff727cd3820>", "_build": "<function ActorCriticPolicy._build at 0x7ff727cd38b0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff727cd3940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff727cd39d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff727cd3a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff727cd3af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff727cd3b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff727cd3c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff727cd3ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff727cd12a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675609172008154112, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKnJ6D0WoPS+HRIqPyXsiD/UgJi+N346wBk3Cz6IiaK/Z6aKPqpstz9RM8o/cnEnPzTXhb8sHgXAzLXLPrYxuj+cnx0/yGGdv5NTMT+1+UBAodw5PjId5j8QJQm/5nBlv4eNbD/BOO8+47pFwI31tr8jMCU/umZ9P7WBJ76BqHs7teeAP7JPkL2qm9C9cuIrv+xeTr9OFq0/pffnP6mceT6zJYc/qeSgP8Du6D6u8Os+dCc5Pgsqpz/68oc9Q6kcPSdgX7+TBlS9/zSBP9Ym1L2HjWw/wTjvPuO6RcCdGTM/F9/TPmp5pb9+Aog+fPuQP3FVLz7SQY8/IVBnv5/PAcBstDI/8SNvvzdhoD8SFzi/2vHEvzQV1Dt33SQ/0EXBvyJYdL5L0si/dQ1MPzdVdL5qX8I/wwLNvqQQ9b78nJQ/h41sP0D6CMCMuKU+jfW2v1N/uj7ftYa+EKcrP5S9kT/Pbr4++nwvvYdVYz777oW/tmp/PnNakL0pB/A/x1AGPzoLgr9Ws4Y/u2BMvhN1LsAVCH6+J0ahPnHYUT8JNn29LUfgPkyTF8Didws/4Ga1P4eNbD/BOO8+jLilPo31tr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABaSLs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJ7hoPQAAAABO3fi/AAAAAFouXT0AAAAAEkIAQAAAAADrZeE9AAAAADxl3z8AAAAAaCoQvgAAAADpT++/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFBHpNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgC+lEL4AAAAAoUzhvwAAAAAd6969AAAAAEQZAEAAAAAAwlRjvQAAAABFRPA/AAAAAJT2tb0AAAAAKB3jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA98UzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC53a+7AAAAAAzR+L8AAAAArgZivQAAAAD3Qf0/AAAAAC5zwD0AAAAATVTsPwAAAAABXMS9AAAAACZ/378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEbrq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAd7lPAAAAADFKuK/AAAAADBjVD0AAAAAU3bmPwAAAACsQ+S9AAAAANEZ9j8AAAAAm7wEvQAAAADYDQDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIdrARK6FuiMAWyUTegDjAF0lEdAqAj+aUiY9nV9lChoBkdAlHL8Lronr2gHTegDaAhHQKgJNgl4TsZ1fZQoaAZHQJGObu0CzTpoB03oA2gIR0CoCrJAMUh3dX2UKGgGR0CPEek1Mue0aAdN6ANoCEdAqA7P0dzXBnV9lChoBkdAj2Q0qYqoZWgHTegDaAhHQKgVlRTCLuR1fZQoaAZHQJGTIQmNR3xoB03oA2gIR0CoFcnpKSPmdX2UKGgGR0CRHG7x/d6+aAdN6ANoCEdAqBc/RiPQwHV9lChoBkdAkVe7xiG34WgHTegDaAhHQKgbfXe3x4J1fZQoaAZHQJHp/HaN+9doB03oA2gIR0CoIjk690zTdX2UKGgGR0CPgS44Ia99aAdN6ANoCEdAqCJv4h2W6nV9lChoBkdAkA4+DnNgSmgHTegDaAhHQKgj3c6eXiR1fZQoaAZHQJIaDhgmZ3NoB03oA2gIR0CoJ/U8V58jdX2UKGgGR0CQrgjm0VrRaAdN6ANoCEdAqC6q6BiCrnV9lChoBkdAjQNXZGrjpGgHTegDaAhHQKgu5E1EVnF1fZQoaAZHQJRP9IWgvlFoB03oA2gIR0CoMGCrksBidX2UKGgGR0CQNOWmP5pKaAdN6ANoCEdAqDSs0zj3mHV9lChoBkdAk4YBoEjgRGgHTegDaAhHQKg7gFC9h7V1fZQoaAZHQJGyOyv9tMxoB03oA2gIR0CoO7oSlFc6dX2UKGgGR0CV1J1DSgGsaAdN6ANoCEdAqD1CxmkFfXV9lChoBkdAlby8iSq2jWgHTegDaAhHQKhBhfiPyTZ1fZQoaAZHQJMkg5OrQw9oB03oA2gIR0CoSG5q/M4cdX2UKGgGR0CO7lWEsasIaAdN6ANoCEdAqEioEQoTf3V9lChoBkdAlKgBP420iWgHTegDaAhHQKhKJxhDw6R1fZQoaAZHQJS69I5HVgBoB03oA2gIR0CoTmEovzvrdX2UKGgGR0CUIwI0IkZ8aAdN6ANoCEdAqFVIPsiSq3V9lChoBkdAlfctgOSW7mgHTegDaAhHQKhVfZ6lchV1fZQoaAZHQIY0+lMyrPtoB03oA2gIR0CoVwDNY8uBdX2UKGgGR0CPJi4vN/vwaAdN6ANoCEdAqFtYjD8+A3V9lChoBkdAhrgAdXDFZWgHTegDaAhHQKhiBD9fkWB1fZQoaAZHQISJcjcEeQxoB03oA2gIR0CoYjnUlRgrdX2UKGgGR0CR+0AZsKsuaAdN6ANoCEdAqGO5zYEns3V9lChoBkdAkva3LFGXomgHTegDaAhHQKhn1wEQoTh1fZQoaAZHQJTWNWxQizNoB03oA2gIR0Cobnzg/C66dX2UKGgGR0CTAqiADq4ZaAdN6ANoCEdAqG63GyX2NHV9lChoBkdAjXoq3d9DyGgHTegDaAhHQKhwMb3oLXt1fZQoaAZHQJPk0bkwN9ZoB03oA2gIR0CodDrm6oVEdX2UKGgGR0CTHbH7gsK9aAdN6ANoCEdAqHq/FNtZWHV9lChoBkdAky7Ncry1/mgHTegDaAhHQKh69xaPjn51fZQoaAZHQJOOjGrCFbpoB03oA2gIR0CofGxzBAObdX2UKGgGR0CT9nsKb8WLaAdN6ANoCEdAqICsinpB5XV9lChoBkdAlh9HgHeJpGgHTegDaAhHQKiHSouPFNt1fZQoaAZHQJUsyAc1fmdoB03oA2gIR0Coh3yIxgy/dX2UKGgGR0CTsmtTUAktaAdN6ANoCEdAqIjozk6tDHV9lChoBkdAhtptXgccVGgHTegDaAhHQKiNHRYzSCx1fZQoaAZHQJRtjJ2dNFloB03oA2gIR0Cok7hrvb48dX2UKGgGR0CXL+TxoZhsaAdN6ANoCEdAqJPsGX5WR3V9lChoBkdAknomi5/b02gHTegDaAhHQKiVf76YVqN1fZQoaAZHQJN/EV0tAcFoB03oA2gIR0ComdPNu+AVdX2UKGgGR0CTqotgKF7EaAdN6ANoCEdAqKB9Y4hllXV9lChoBkdAl9dl8G9pRGgHTegDaAhHQKigsJj2Bat1fZQoaAZHQI0wTkCFK05oB03oA2gIR0CooiLv1DjSdX2UKGgGR0CL2J1V5rxiaAdN6ANoCEdAqKYe6/ZdwHV9lChoBkdAlIFN+5OJtWgHTegDaAhHQKispp7CzkZ1fZQoaAZHQJL5zCBPKuBoB03oA2gIR0CorNpF1B+ndX2UKGgGR0CRFwMEzO5baAdN6ANoCEdAqK5D2i+L33V9lChoBkdAlDRUuDjBEmgHTegDaAhHQKiyYQ6p5u91fZQoaAZHQJaB1JqZc9poB03oA2gIR0CouO8LKFIvdX2UKGgGR0CT5j64Ds+naAdN6ANoCEdAqLklC1JDmnV9lChoBkdAj9DwVbiZOWgHTegDaAhHQKi6tOoHcDd1fZQoaAZHQIxkzW9US7JoB03oA2gIR0CovyX1rZandX2UKGgGR0CVevcBltj1aAdN6ANoCEdAqMY9V94NZ3V9lChoBkdAkDTAwblzVGgHTegDaAhHQKjGeTHsC1Z1fZQoaAZHQJD1Bhd+ocdoB03oA2gIR0Cox/kgfU4JdX2UKGgGR0CXAX1c+qzaaAdN6ANoCEdAqMwwR02ca3V9lChoBkdAkmHK86FM7GgHTegDaAhHQKjS9mVZ9ux1fZQoaAZHQI69d5KODJ5oB03oA2gIR0Co0ywtz0YkdX2UKGgGR0CQ4xlGwzLwaAdN6ANoCEdAqNSxr1uivnV9lChoBkdAkx7r4BV+7WgHTegDaAhHQKjY2XRgJC11fZQoaAZHQJH5OUVzp5hoB03oA2gIR0Co33jRlYlqdX2UKGgGR0CSv+aAnUlSaAdN6ANoCEdAqN+qudPLxXV9lChoBkdAlXqfcrRSg2gHTegDaAhHQKjhIFUQ0411fZQoaAZHQJSOMn+hoM9oB03oA2gIR0Co5Uy4OMESdX2UKGgGR0CTYqX4j8k2aAdN6ANoCEdAqOwUCq6vq3V9lChoBkdAk2UOqvNeMWgHTegDaAhHQKjsR3cHnlp1fZQoaAZHQI5dH7xd6cBoB03oA2gIR0Co7cEFGG21dX2UKGgGR0CEisPtlZoxaAdN6ANoCEdAqPH1eyAxz3V9lChoBkdAkOjaPOpsGmgHTegDaAhHQKj40H446wN1fZQoaAZHQJGm96IFeOZoB03oA2gIR0Co+QTo+wC9dX2UKGgGR0CQzppUxVQzaAdN6ANoCEdAqPp+TC+De3V9lChoBkdAk9dgRkEs8WgHTegDaAhHQKj+nLOiWVx1fZQoaAZHQJOCGQq7ROVoB03oA2gIR0CpBVAWBSUDdX2UKGgGR0CTVDJe3QUpaAdN6ANoCEdAqQWFvES/TXV9lChoBkdAkh5tWMju8mgHTegDaAhHQKkG9mHP/rB1fZQoaAZHQJC+Bn+Q2ddoB03oA2gIR0CpCxmReTmodX2UKGgGR0CT5inw5NoKaAdN6ANoCEdAqRHADvE0i3V9lChoBkdAkkRB2OhkAmgHTegDaAhHQKkR9cbBGhF1fZQoaAZHQJFH4u/UONJoB03oA2gIR0CpE25avA45dX2UKGgGR0CI4k2phnanaAdN6ANoCEdAqReYv114gXV9lChoBkdAk54SY1He8GgHTegDaAhHQKkePuP3i711fZQoaAZHQIYci2MKkVNoB03oA2gIR0CpHnMWfseGdX2UKGgGR0CDW8VLSNOuaAdN6ANoCEdAqR/qxRl6JXV9lChoBkdAju4ILofSyGgHTegDaAhHQKkkFkzXSSh1fZQoaAZHQJIJ6YoiLVFoB03oA2gIR0CpKq6uOjqOdX2UKGgGR0CN7o+j/MnraAdN6ANoCEdAqSriad+Xq3V9lChoBkdAlcaPoaDPGGgHTegDaAhHQKksWgK4QSV1fZQoaAZHQIVGA6fapP1oB03oA2gIR0CpMIKuB+WodX2UKGgGR0CWGBkNWluWaAdN6ANoCEdAqTch3NcGDHV9lChoBkdAl14g2Ifr8mgHTegDaAhHQKk3VfpljEx1fZQoaAZHQJLSRq46Oo5oB03oA2gIR0CpOMvTw2ETdX2UKGgGR0CSxX2fChvjaAdN6ANoCEdAqTzXG4qgAnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (183 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1161.1927196296863, "std_reward": 177.0238965278504, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T15:59:50.153387"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:141b409fc890f47472e0b67f6c32ab1e163a1fc8f7f9c61d0eaa722ff3aff7e3
3
+ size 2136