File size: 17,680 Bytes
49570a9
 
 
7bf3502
 
 
 
 
 
49570a9
 
 
 
 
 
7bf3502
49570a9
 
7bf3502
49570a9
7bf3502
 
 
 
 
 
 
 
49570a9
7bf3502
 
 
 
49570a9
7bf3502
 
 
 
 
49570a9
7bf3502
 
 
 
 
 
49570a9
7bf3502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49570a9
 
 
 
289dec3
 
49570a9
 
289dec3
49570a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bf3502
 
 
49570a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bf3502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49570a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bf3502
49570a9
 
 
 
 
7bf3502
49570a9
7bf3502
 
 
 
 
49570a9
 
 
 
 
 
 
 
 
 
 
7bf3502
49570a9
 
 
7bf3502
49570a9
 
 
 
 
 
 
 
 
 
7bf3502
49570a9
 
 
 
 
 
 
 
 
 
 
 
 
 
7bf3502
49570a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bf3502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49570a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
---
base_model: allenai/specter2_base
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10053
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: HBV-endemic area diagnostic criteria comparison
  sentences:
  - 'Comparison of usefulness of clinical diagnostic criteria for hepatocellular carcinoma
    in a hepatitis B endemic area. '
  - 'The validation of the 2010 American Association for the Study of Liver Diseases
    guideline for the diagnosis of hepatocellular carcinoma in an endemic area. '
  - 'Which admission electrocardiographic parameter is more powerful predictor of
    no-reflow in patients with acute anterior myocardial infarction who underwent
    primary percutaneous intervention? '
- source_sentence: Family history of alcoholism classification schemes
  sentences:
  - 'Developing the mentor/protege relationship. '
  - 'Family history of alcoholism in schizophrenia. '
  - 'Family history models of alcoholism: age of onset, consequences and dependence. '
- source_sentence: Intellectual Property Commercialization
  sentences:
  - 'ALEPH-2, a suspected anxiolytic and putative hallucinogenic phenylisopropylamine
    derivative, is a 5-HT2a and 5-HT2c receptor agonist. '
  - 'Technology transfer and monitoring practices. '
  - '[From intellectual property to commercial property]. '
- source_sentence: Transmembrane domain mutants
  sentences:
  - 'Dysgerminoma; case with pulmonary metastases; result of treatment with irradiation
    and male sex hormone. '
  - 'Toward a high-resolution structure of phospholamban: design of soluble transmembrane
    domain mutants. '
  - 'Scanning N-glycosylation mutagenesis of membrane proteins. '
- source_sentence: Six-coordinate low-spin iron(III) porphyrinate complexes
  sentences:
  - 'Molecular structures and magnetic resonance spectroscopic investigations of highly
    distorted six-coordinate low-spin iron(III) porphyrinate complexes. '
  - 'Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual intermediate-spin
    electronic structure. '
  - 'Performing Economic Evaluation of Integrated Care: Highway to Hell or Stairway
    to Heaven? '
model-index:
- name: SentenceTransformer based on allenai/specter2_base
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: triplet dev
      type: triplet-dev
    metrics:
    - type: cosine_accuracy
      value: 0.606
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.395
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.603
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.615
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.615
      name: Max Accuracy
---

# SentenceTransformer based on allenai/specter2_base

This model is an initial proof of concept for (yet unpublished) article on ultra-hard negative triplet generation. While the original Specter2 adapters were trained on 600k triplets, only 10k ultra-hard negatives were enough to outperform the Proximity adapter.


## Model Details
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) <!-- at revision 3447645e1def9117997203454fa4495937bfbd83 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Six-coordinate low-spin iron(III) porphyrinate complexes',
    'Molecular structures and magnetic resonance spectroscopic investigations of highly distorted six-coordinate low-spin iron(III) porphyrinate complexes. ',
    'Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual intermediate-spin electronic structure. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `triplet-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| **cosine_accuracy** | **0.606** |
| dot_accuracy        | 0.395     |
| manhattan_accuracy  | 0.603     |
| euclidean_accuracy  | 0.615     |
| max_accuracy        | 0.615     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 10,053 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                           | positive                                                                          | negative                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 7.49 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.08 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.46 tokens</li><li>max: 48 tokens</li></ul> |
* Samples:
  | anchor                                                       | positive                                                                                                            | negative                                                     |
  |:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|
  | <code>COM-induced secretome changes in U937 monocytes</code> | <code>Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. </code> | <code>Monocytes. </code>                                     |
  | <code>Metamaterials</code>                                   | <code>Sound attenuation optimization using metaporous materials tuned on exceptional points. </code>                | <code>Metamaterials: A cat's eye for all directions. </code> |
  | <code>Pediatric Parasitology</code>                          | <code>Parasitic infections among school age children 6 to 11-years-of-age in the Eastern province. </code>          | <code>[DIALOGUE ON PEDIATRIC PARASITOLOGY]. </code>          |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 6
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 6
- `max_steps`: -1
- `lr_scheduler_type`: cosine_with_restarts
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | triplet-dev_cosine_accuracy |
|:------:|:----:|:-------------:|:---------------------------:|
| 0      | 0    | -             | 0.373                       |
| 0.1667 | 1    | 3.138         | -                           |
| 0.3333 | 2    | 2.9761        | -                           |
| 0.5    | 3    | 2.7135        | -                           |
| 0.6667 | 4    | 2.5144        | -                           |
| 0.8333 | 5    | 1.9797        | -                           |
| 1.0    | 6    | 1.2683        | -                           |
| 1.1667 | 7    | 1.6058        | -                           |
| 1.3333 | 8    | 1.3236        | -                           |
| 1.5    | 9    | 1.1134        | -                           |
| 1.6667 | 10   | 1.1205        | -                           |
| 1.8333 | 11   | 0.9369        | -                           |
| 2.0    | 12   | 0.6215        | -                           |
| 2.1667 | 13   | 1.0374        | -                           |
| 2.3333 | 14   | 0.9355        | -                           |
| 2.5    | 15   | 0.7118        | -                           |
| 2.6667 | 16   | 0.7967        | -                           |
| 2.8333 | 17   | 0.5739        | -                           |
| 3.0    | 18   | 0.4515        | -                           |
| 3.1667 | 19   | 0.8018        | -                           |
| 3.3333 | 20   | 0.6557        | -                           |
| 3.5    | 21   | 0.6027        | -                           |
| 3.6667 | 22   | 0.6747        | -                           |
| 3.8333 | 23   | 0.5013        | -                           |
| 4.0    | 24   | 0.1428        | -                           |
| 4.1667 | 25   | 0.5889        | 0.596                       |
| 4.3333 | 26   | 0.5439        | -                           |
| 4.5    | 27   | 0.4742        | -                           |
| 4.6667 | 28   | 0.5734        | -                           |
| 4.8333 | 29   | 0.3966        | -                           |
| 5.0    | 30   | 0.1793        | -                           |
| 5.1667 | 31   | 0.5408        | -                           |
| 5.3333 | 32   | 0.5174        | -                           |
| 5.5    | 33   | 0.4179        | -                           |
| 5.6667 | 34   | 0.4589        | -                           |
| 5.8333 | 35   | 0.3683        | -                           |
| 6.0    | 36   | 0.1442        | 0.606                       |


### Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.0
- Accelerate: 1.0.1
- Datasets: 2.19.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->