---
base_model: allenai/specter2_base
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:9988
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Splenomegaly in Malta fever
sentences:
- 'TROPICAL SPLENOMEGALY. '
- '[Voluminous migrating spleen in the course of Malta fever: effects of splenectomy]. '
- '[Adenoma of appendix]. '
- source_sentence: sRNA regulation
sentences:
- 'SR proteins control a complex network of RNA-processing events. '
- 'Convergence of submodality-specific input onto neurons in primary somatosensory
cortex. '
- 'Dynamic features of gene expression control by small regulatory RNAs. '
- source_sentence: Foley catheter hysterosalpingography
sentences:
- 'Hysterosalpingography using a Foley catheter. '
- '[Long-term follow-up of adult patients with isolated congenital AV block]. '
- 'Hysterosalpingography. '
- source_sentence: Anti-endoglin monoclonal antibodies
sentences:
- 'Cortisol response to general anaesthesia for medical imaging in children. '
- 'Anti-endoglin monoclonal antibodies are effective for suppressing metastasis
and the primary tumors by targeting tumor vasculature. '
- 'Endoglin: Beyond the Endothelium. '
- source_sentence: Alternariol Methyl Ether Quantitation
sentences:
- 'Stable isotope dilution assays of alternariol and alternariol monomethyl ether
in beverages. '
- 'The roles of eotaxin and the STAT6 signalling pathway in eosinophil recruitment
and host resistance to the nematodes Nippostrongylus brasiliensis and Heligmosomoides
bakeri. '
- 'Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. '
---
# SentenceTransformer based on allenai/specter2_base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Alternariol Methyl Ether Quantitation',
'Stable isotope dilution assays of alternariol and alternariol monomethyl ether in beverages. ',
'Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 9,988 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
mechanotransduction pathways
| Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading.
| Mechanotransduction: May the force be with you.
|
| FSR-tunable comb filter
| Multiwavelength Raman fiber laser with a continuously-tunable spacing.
| Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror.
|
| Radiation pneumonitis enhancement
| Induction and concurrent taxanes enhance both the pulmonary metabolic radiation response and the radiation pneumonitis response in patients with esophagus cancer.
| Imaging of Hypersensitivity Pneumonitis.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `lr_scheduler_type`: cosine_with_restarts
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters