zephyr-7b-dpo-full / README.md
wxzhang's picture
Model save
ba06a77 verified
|
raw
history blame
3.52 kB
metadata
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-full
    results: []

zephyr-7b-dpo-full

This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5107
  • Rewards/chosen: -1.4645
  • Rewards/rejected: -2.3555
  • Rewards/accuracies: 0.7718
  • Rewards/margins: 0.8911
  • Logps/rejected: -491.4778
  • Logps/chosen: -426.3907
  • Logits/rejected: 1.4587
  • Logits/chosen: 0.9514

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6339 0.1 100 0.6366 -0.4251 -0.6280 0.6766 0.2029 -318.7289 -322.4543 -1.7266 -1.8550
0.5801 0.21 200 0.5761 -0.9339 -1.4916 0.7242 0.5577 -405.0862 -373.3335 -1.7791 -1.8866
0.5298 0.31 300 0.5505 -0.9519 -1.6203 0.7401 0.6684 -417.9537 -375.1365 -0.9729 -1.1938
0.5055 0.42 400 0.5331 -1.3809 -2.1858 0.7540 0.8048 -474.5050 -418.0395 0.2901 -0.0376
0.5243 0.52 500 0.5240 -1.5398 -2.3578 0.7718 0.8180 -491.7054 -433.9210 1.1167 0.7245
0.5024 0.63 600 0.5212 -1.6677 -2.5319 0.75 0.8643 -509.1215 -446.7127 1.3224 0.8469
0.4855 0.73 700 0.5156 -1.5293 -2.4112 0.7579 0.8819 -497.0490 -432.8780 1.5165 1.0177
0.5048 0.84 800 0.5121 -1.4754 -2.3714 0.7698 0.8960 -493.0640 -427.4831 1.3869 0.8797
0.5193 0.94 900 0.5109 -1.4545 -2.3434 0.7738 0.8889 -490.2650 -425.3930 1.4499 0.9411

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.0