init
Browse files
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- yahma/alpaca-cleaned
|
5 |
+
- teknium/GPT4-LLM-Cleaned
|
6 |
+
- databricks/databricks-dolly-15k
|
7 |
+
---
|
8 |
+
|
9 |
+
|
10 |
+
This repo contains a low-rank adapter for LLaMA-13b
|
11 |
+
fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset.
|
12 |
+
|
13 |
+
This version of the weights was trained with the following hyperparameters:
|
14 |
+
|
15 |
+
- Epochs: 10 (load from best epoch)
|
16 |
+
- Batch size: 128
|
17 |
+
- Cutoff length: 1024
|
18 |
+
- Learning rate: 2e-5
|
19 |
+
- Lora _r_: 16
|
20 |
+
- Lora target modules: q_proj, k_proj, v_proj, o_proj
|
21 |
+
|
22 |
+
|
23 |
+
That is trained by using RTX 3090 * 8 pcs around 10 hrs.:
|
24 |
+
|
25 |
+
```bash
|
26 |
+
WORLD_SIZE=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 nohup torchrun --nproc_per_node=8 --master_port=1234 finetune.py \
|
27 |
+
--base_model 'decapoda-research/llama-13b-hf' \
|
28 |
+
--data_path './alpaca_data_gpt4_dolly15k.json' \
|
29 |
+
--output_dir './lora-alpaca-13B-gpt4-dolly15k' \
|
30 |
+
--batch_size 128 \
|
31 |
+
--micro_batch_size 4 \
|
32 |
+
--num_epochs 10 \
|
33 |
+
--learning_rate 2e-5 \
|
34 |
+
--cutoff_len 1024 \
|
35 |
+
--val_set_size 2000 \
|
36 |
+
--lora_r 4 \
|
37 |
+
--lora_alpha 16 \
|
38 |
+
--lora_dropout 0.05 \
|
39 |
+
--lora_target_modules '[q_proj,k_proj,v_proj,o_proj]' \
|
40 |
+
--train_on_inputs \
|
41 |
+
--group_by_length \
|
42 |
+
&
|
43 |
+
|
44 |
+
```
|
45 |
+
|
46 |
+
Instructions for running it can be found at https://github.com/tloen/alpaca-lora.
|