wyeh
/

wyeh commited on
Commit
edceb76
1 Parent(s): a4f7d85
Files changed (1) hide show
  1. README.md +46 -0
README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - yahma/alpaca-cleaned
5
+ - teknium/GPT4-LLM-Cleaned
6
+ - databricks/databricks-dolly-15k
7
+ ---
8
+
9
+
10
+ This repo contains a low-rank adapter for LLaMA-13b
11
+ fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset.
12
+
13
+ This version of the weights was trained with the following hyperparameters:
14
+
15
+ - Epochs: 10 (load from best epoch)
16
+ - Batch size: 128
17
+ - Cutoff length: 1024
18
+ - Learning rate: 2e-5
19
+ - Lora _r_: 16
20
+ - Lora target modules: q_proj, k_proj, v_proj, o_proj
21
+
22
+
23
+ That is trained by using RTX 3090 * 8 pcs around 10 hrs.:
24
+
25
+ ```bash
26
+ WORLD_SIZE=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 nohup torchrun --nproc_per_node=8 --master_port=1234 finetune.py \
27
+ --base_model 'decapoda-research/llama-13b-hf' \
28
+ --data_path './alpaca_data_gpt4_dolly15k.json' \
29
+ --output_dir './lora-alpaca-13B-gpt4-dolly15k' \
30
+ --batch_size 128 \
31
+ --micro_batch_size 4 \
32
+ --num_epochs 10 \
33
+ --learning_rate 2e-5 \
34
+ --cutoff_len 1024 \
35
+ --val_set_size 2000 \
36
+ --lora_r 4 \
37
+ --lora_alpha 16 \
38
+ --lora_dropout 0.05 \
39
+ --lora_target_modules '[q_proj,k_proj,v_proj,o_proj]' \
40
+ --train_on_inputs \
41
+ --group_by_length \
42
+ &
43
+
44
+ ```
45
+
46
+ Instructions for running it can be found at https://github.com/tloen/alpaca-lora.