File size: 15,549 Bytes
d186dc0
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f477b4b0dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f477b4b4540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686350828473749710, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADdbbPsaxJjwEhxg/DdbbPsaxJjwEhxg/DdbbPsaxJjwEhxg/DdbbPsaxJjwEhxg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0G+Vv1oplj8ShF4+p7+ov5zoyD8it1U/gfcav2HBgj8dQpU/TC2Ov5PBoL+uiRu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAN1ts+xrEmPASHGD8XT7s7bldWOsNXBzwN1ts+xrEmPASHGD8XT7s7bldWOsNXBzwN1ts+xrEmPASHGD8XT7s7bldWOsNXBzwN1ts+xrEmPASHGD8XT7s7bldWOsNXBzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42936745 0.01017422 0.5958102 ]\n [0.42936745 0.01017422 0.5958102 ]\n [0.42936745 0.01017422 0.5958102 ]\n [0.42936745 0.01017422 0.5958102 ]]", "desired_goal": "[[-1.1674747   1.173137    0.21730068]\n [-1.3183488   1.5695987   0.83482563]\n [-0.6053391   1.0215265   1.1660801 ]\n [-1.1107574  -1.2559074  -0.6075696 ]]", "observation": "[[0.42936745 0.01017422 0.5958102  0.00571622 0.00081765 0.00826067]\n [0.42936745 0.01017422 0.5958102  0.00571622 0.00081765 0.00826067]\n [0.42936745 0.01017422 0.5958102  0.00571622 0.00081765 0.00826067]\n [0.42936745 0.01017422 0.5958102  0.00571622 0.00081765 0.00826067]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+PDzPZWHGb2pI0k+hVEQPtD6Zb0k54s+Y1UGvsJUBT7/bok+yzFGvRglqL32LAA8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.11911196 -0.03748282  0.1964251 ]\n [ 0.14093597 -0.0561474   0.27324784]\n [-0.1311851   0.13020614  0.26842496]\n [-0.04838733 -0.082102    0.00782322]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo0CfyJMk6L+UhpRSlIwBbJRLMowBdJRHQKadkHcDbJx1fZQoaAZoCWgPQwjOwTOhSeLwv5SGlFKUaBVLMmgWR0CmnTnyd4FBdX2UKGgGaAloD0MID9JT5BBx7b+UhpRSlGgVSzJoFkdAppzVXiiqQ3V9lChoBmgJaA9DCM2SADW17ALAlIaUUpRoFUsyaBZHQKacWl+EytV1fZQoaAZoCWgPQwhoWfePhaj0v5SGlFKUaBVLMmgWR0CmnqwwsXizdX2UKGgGaAloD0MIE/QXesRoAcCUhpRSlGgVSzJoFkdApp5VeyAxz3V9lChoBmgJaA9DCOW36GSpdfO/lIaUUpRoFUsyaBZHQKad8Bnzxw11fZQoaAZoCWgPQwip29lXHmT/v5SGlFKUaBVLMmgWR0CmnXRCIDYAdX2UKGgGaAloD0MI0qdV9Idm9L+UhpRSlGgVSzJoFkdApp/NcY64lXV9lChoBmgJaA9DCC6u8ZnsH+m/lIaUUpRoFUsyaBZHQKafdrPdEb51fZQoaAZoCWgPQwiiYTHqWtsBwJSGlFKUaBVLMmgWR0CmnxGcvugIdX2UKGgGaAloD0MIVn+EYcCS7L+UhpRSlGgVSzJoFkdApp6V4u9OAXV9lChoBmgJaA9DCH6rdeJyvPC/lIaUUpRoFUsyaBZHQKahAbADaGp1fZQoaAZoCWgPQwhdaoR+pt7ov5SGlFKUaBVLMmgWR0CmoKsFMZgpdX2UKGgGaAloD0MIdhn+0w3U8L+UhpRSlGgVSzJoFkdApqBFtGd7OXV9lChoBmgJaA9DCHHjFvNzw/i/lIaUUpRoFUsyaBZHQKafyoWHk951fZQoaAZoCWgPQwjvb9Befbznv5SGlFKUaBVLMmgWR0CmohfJeVs2dX2UKGgGaAloD0MIeXQjLCri8r+UhpRSlGgVSzJoFkdApqHBF3IMjXV9lChoBmgJaA9DCHnpJjEILO6/lIaUUpRoFUsyaBZHQKahW9pRGc51fZQoaAZoCWgPQwjVr3Q+PAv7v5SGlFKUaBVLMmgWR0CmoOAiml67dX2UKGgGaAloD0MILT9wlScQ87+UhpRSlGgVSzJoFkdApqMeAVfu1HV9lChoBmgJaA9DCGZn0TsV8PW/lIaUUpRoFUsyaBZHQKaixz1bqyJ1fZQoaAZoCWgPQwhNLzGW6Zfov5SGlFKUaBVLMmgWR0CmomG5tm+TdX2UKGgGaAloD0MI9+eiIeNR9L+UhpRSlGgVSzJoFkdApqHl3jdYXHV9lChoBmgJaA9DCIfFqGvt/ee/lIaUUpRoFUsyaBZHQKakMujh1kl1fZQoaAZoCWgPQwhX7C+7Jw/6v5SGlFKUaBVLMmgWR0Cmo9xZ2ZAqdX2UKGgGaAloD0MIq83/q44c+b+UhpRSlGgVSzJoFkdApqN3B1s+FHV9lChoBmgJaA9DCK6AQj19hOy/lIaUUpRoFUsyaBZHQKai++h4+r51fZQoaAZoCWgPQwjKU1bT9UT+v5SGlFKUaBVLMmgWR0CmpUmICU5ddX2UKGgGaAloD0MIGArYDkYMAcCUhpRSlGgVSzJoFkdApqTyzC1qnHV9lChoBmgJaA9DCDbOpiOAm+G/lIaUUpRoFUsyaBZHQKakjX6InBt1fZQoaAZoCWgPQwhD/plBfCD8v5SGlFKUaBVLMmgWR0CmpBHGbTc7dX2UKGgGaAloD0MIKQRyiSMP97+UhpRSlGgVSzJoFkdApqbO+IuXeHV9lChoBmgJaA9DCOv/HObLC/i/lIaUUpRoFUsyaBZHQKameSnLq2V1fZQoaAZoCWgPQwhmLQWk/Q/8v5SGlFKUaBVLMmgWR0CmphSeiBXkdX2UKGgGaAloD0MIWfrQBfUt87+UhpRSlGgVSzJoFkdApqWZsCT2WnV9lChoBmgJaA9DCFN6ppcYi/2/lIaUUpRoFUsyaBZHQKaoq3Td+G51fZQoaAZoCWgPQwgUyy2thgTwv5SGlFKUaBVLMmgWR0CmqFWxyGSIdX2UKGgGaAloD0MIc6Hyr+XV8b+UhpRSlGgVSzJoFkdApqfxVGTcI3V9lChoBmgJaA9DCD86deWzPOW/lIaUUpRoFUsyaBZHQKandlar3kB1fZQoaAZoCWgPQwjQJodPOlH1v5SGlFKUaBVLMmgWR0Cmqn+SKWLQdX2UKGgGaAloD0MIO3KkMzBy7L+UhpRSlGgVSzJoFkdApqop7zCk43V9lChoBmgJaA9DCFsMHqZ98+q/lIaUUpRoFUsyaBZHQKapxXXiBGx1fZQoaAZoCWgPQwi2LcpskEnnv5SGlFKUaBVLMmgWR0CmqUpnYg7pdX2UKGgGaAloD0MIW7Iqwk2G+L+UhpRSlGgVSzJoFkdApqxwBcRlH3V9lChoBmgJaA9DCCLBVDNrSQDAlIaUUpRoFUsyaBZHQKasGlCTlkp1fZQoaAZoCWgPQwg3VIzzNyHqv5SGlFKUaBVLMmgWR0Cmq7X0PH1fdX2UKGgGaAloD0MIuFonLsfr+r+UhpRSlGgVSzJoFkdApqs67I1cdHV9lChoBmgJaA9DCGhdo+VAj+G/lIaUUpRoFUsyaBZHQKauZo24usd1fZQoaAZoCWgPQwi/gjRj0bT4v5SGlFKUaBVLMmgWR0CmrhEKNQ0odX2UKGgGaAloD0MI/dzQlJ3+8r+UhpRSlGgVSzJoFkdApq2siMYMv3V9lChoBmgJaA9DCLml1ZC4B/m/lIaUUpRoFUsyaBZHQKatMb1h9b51fZQoaAZoCWgPQwhcWaKzzCLyv5SGlFKUaBVLMmgWR0CmsGUnG828dX2UKGgGaAloD0MIqyUd5WC26r+UhpRSlGgVSzJoFkdAprAPfuTibXV9lChoBmgJaA9DCM/zp43qtPW/lIaUUpRoFUsyaBZHQKavqxtYSxt1fZQoaAZoCWgPQwiNRGgEG1fvv5SGlFKUaBVLMmgWR0CmrzBeXzDodX2UKGgGaAloD0MI9N+D1y7t/L+UhpRSlGgVSzJoFkdAprIfIOpbU3V9lChoBmgJaA9DCCNKe4MvzPW/lIaUUpRoFUsyaBZHQKaxyHxBmf51fZQoaAZoCWgPQwh2HD9UGrEBwJSGlFKUaBVLMmgWR0CmsWMSsbNsdX2UKGgGaAloD0MIILOz6J3K8L+UhpRSlGgVSzJoFkdAprDnRArxzHV9lChoBmgJaA9DCDz2s1iKpPq/lIaUUpRoFUsyaBZHQKazeRhc7hh1fZQoaAZoCWgPQwjtRbQdU9cDwJSGlFKUaBVLMmgWR0CmsyJxFRYSdX2UKGgGaAloD0MId7temiLAAMCUhpRSlGgVSzJoFkdAprK9nbqQinV9lChoBmgJaA9DCDFhNCvb5wDAlIaUUpRoFUsyaBZHQKayQngHeJp1fZQoaAZoCWgPQwhq2zAKgsftv5SGlFKUaBVLMmgWR0CmtJbsfJV9dX2UKGgGaAloD0MIZePBFrudA8CUhpRSlGgVSzJoFkdAprRARujynXV9lChoBmgJaA9DCNb8+EuL2gfAlIaUUpRoFUsyaBZHQKaz2t9x6v91fZQoaAZoCWgPQwiZ8bbSa/P6v5SGlFKUaBVLMmgWR0Cms18gZCOWdX2UKGgGaAloD0MIBTI7i95p/r+UhpRSlGgVSzJoFkdAprWiwSrYG3V9lChoBmgJaA9DCJfl6zL8Z/O/lIaUUpRoFUsyaBZHQKa1TBYV6/t1fZQoaAZoCWgPQwgJ3/sbtNf1v5SGlFKUaBVLMmgWR0CmtOauOjqOdX2UKGgGaAloD0MIr9FyoIdaAMCUhpRSlGgVSzJoFkdAprRq4x1xKnV9lChoBmgJaA9DCBBc5QmEHfO/lIaUUpRoFUsyaBZHQKa2ywblzU91fZQoaAZoCWgPQwitw9FVunv9v5SGlFKUaBVLMmgWR0CmtnRODaoNdX2UKGgGaAloD0MIsYf2sYLfA8CUhpRSlGgVSzJoFkdAprYPKyOaOXV9lChoBmgJaA9DCAslk1M74wLAlIaUUpRoFUsyaBZHQKa1lE5Qxet1fZQoaAZoCWgPQwjVzFoKSNsHwJSGlFKUaBVLMmgWR0Cmt9xODaoNdX2UKGgGaAloD0MIqG+Z02Wx87+UhpRSlGgVSzJoFkdApreFjTa0yHV9lChoBmgJaA9DCLb0aKonMwLAlIaUUpRoFUsyaBZHQKa3IBtk4FR1fZQoaAZoCWgPQwjl8EknEkzov5SGlFKUaBVLMmgWR0CmtqRTbWVedX2UKGgGaAloD0MIfy+FB80u/b+UhpRSlGgVSzJoFkdAprjiWVu76HV9lChoBmgJaA9DCJT1m4npQuq/lIaUUpRoFUsyaBZHQKa4i7L+xW11fZQoaAZoCWgPQwi14hsKn23xv5SGlFKUaBVLMmgWR0CmuCZIYm9hdX2UKGgGaAloD0MIgH106spn67+UhpRSlGgVSzJoFkdApreqbDuSfXV9lChoBmgJaA9DCB7gSQuXlfG/lIaUUpRoFUsyaBZHQKa6AtxMnJF1fZQoaAZoCWgPQwihgO1gxH4DwJSGlFKUaBVLMmgWR0CmuawtBfKIdX2UKGgGaAloD0MINWH7yRg/AcCUhpRSlGgVSzJoFkdAprlHX5FgD3V9lChoBmgJaA9DCKzgtyHGq/W/lIaUUpRoFUsyaBZHQKa4y5cTrVx1fZQoaAZoCWgPQwjhXpm36vr6v5SGlFKUaBVLMmgWR0Cmuxg8B+4LdX2UKGgGaAloD0MIO99PjZcu/L+UhpRSlGgVSzJoFkdAprrBsEaESXV9lChoBmgJaA9DCG2Oc5twr/6/lIaUUpRoFUsyaBZHQKa6XG7z06J1fZQoaAZoCWgPQwhlpUkp6DYFwJSGlFKUaBVLMmgWR0CmueCs4ku6dX2UKGgGaAloD0MI4dHGEWsx8r+UhpRSlGgVSzJoFkdAprwxaJQ+EHV9lChoBmgJaA9DCNbEAl/R7fi/lIaUUpRoFUsyaBZHQKa729sabWp1fZQoaAZoCWgPQwiUiPAvgsbwv5SGlFKUaBVLMmgWR0Cmu3d9Ujs2dX2UKGgGaAloD0MIm/9XHTmS9r+UhpRSlGgVSzJoFkdAprr9CCz1LHV9lChoBmgJaA9DCGAfnbry2fS/lIaUUpRoFUsyaBZHQKa9RO2y9mJ1fZQoaAZoCWgPQwhYdVYL7PH8v5SGlFKUaBVLMmgWR0CmvO4/u9eydX2UKGgGaAloD0MIPiR8728wAMCUhpRSlGgVSzJoFkdApryI5NoJzHV9lChoBmgJaA9DCIRkARO4tfi/lIaUUpRoFUsyaBZHQKa8DbHIZIh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}