Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```python
|
2 |
+
|
3 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
|
8 |
+
class Prehibition:
|
9 |
+
def __init__(self):
|
10 |
+
model_name = 'wyluilipe/prehibiton-themes-clf'
|
11 |
+
self.tokenizer = BertTokenizer.from_pretrained(model_name)
|
12 |
+
self.model = BertForSequenceClassification.from_pretrained(model_name)
|
13 |
+
|
14 |
+
def predict(self, text):
|
15 |
+
tokenized = self.tokenizer.batch_encode_plus(
|
16 |
+
[text],
|
17 |
+
max_length = 512,
|
18 |
+
pad_to_max_length=True,
|
19 |
+
truncation=True,
|
20 |
+
return_token_type_ids=False
|
21 |
+
)
|
22 |
+
tokens_ids, mask = torch.tensor(tokenized['input_ids']), torch.tensor(tokenized['attention_mask'])
|
23 |
+
with torch.no_grad():
|
24 |
+
model_output = self.model(tokens_ids, mask)
|
25 |
+
return np.argmax(model_output['logits']).item()
|
26 |
+
|
27 |
+
```
|