File size: 13,755 Bytes
b309677
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f735eea5480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f735eea5510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f735eea55a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f735eea5630>", "_build": "<function ActorCriticPolicy._build at 0x7f735eea56c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f735eea5750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f735eea57e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f735eea5870>", "_predict": "<function ActorCriticPolicy._predict at 0x7f735eea5900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f735eea5990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f735eea5a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f735eea5ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f735eea2dc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686534890808092540, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABp7Kr0cVyi8ci0ivG14+TxBE5k90i7JvQAAgD8AAIA/zXGUvPaUVrrwYB83/IgoMhma/bm81zy2AACAPwAAgD8Aff28NNWjPuYLkT0qMIS+lcm7PAKSx7wAAAAAAAAAABMxHb5aD9w+WUGtPYz3mb5VQaE7+WmuvQAAAAAAAAAAyhSIvpPuZz+1Lom+lBsPvz2bqb6uzBY+AAAAAAAAAADzNea99vRKuutMNrO7TccvrZFuOYW6wTMAAIA/AAAAAGalzL2kFAa7C+MxPCJglDwiuaS7Ii+APQAAgD8AAAAAcx7tPVuLDz/DayU9mpmKvubwYD7jol08AAAAAAAAAACmzRE+qPAKP43GhL3/lJu+3c4hPfYDdL0AAAAAAAAAAGYJez1C9Ac+qwVTvr/jjb7AnQ+6Ah5YvQAAAAAAAAAAsLaFPmWZWD9dYR0+emGzvq3GOD7GlaG9AAAAAAAAAABmmum7e+6Nuu1DUbhaFj+zTFiZOWtCczcAAIA/AACAP82bcj6dyc0+kSKMvsKSib6AMoI8VrDDvQAAAAAAAAAATTBzvSnoPbrudiK53ifpMqi6q7sBrjw4AACAPwAAgD8TqTg+VyIiP/iEY72SCZy+2QQFPfCi0DsAAAAAAAAAAGYpJ75dnFo/NkNivfbCgb45QLy9274mvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAVpSJj2BeMAWyUTSoBjAF0lEdAlFJT2JzkqHV9lChoBkdAcXCh8pkPMGgHTUsBaAhHQJRmBmK64Dt1fZQoaAZHQHFumdqcmShoB03uAWgIR0CUZuNn5BTodX2UKGgGR0BtRmKMvRJFaAdNWAFoCEdAlGbsMiKR+3V9lChoBkdAcWBDrZ8KHGgHTXEBaAhHQJRorWwu/UR1fZQoaAZHQG8yH/95yENoB003AWgIR0CUaL9ycTakdX2UKGgGR0Btn5IczZYgaAdNXwFoCEdAlGj+nZTQ3XV9lChoBkdAbJ0GFBY3emgHTVMBaAhHQJRp4R3/xUh1fZQoaAZHQHIdebqhUR5oB00LAWgIR0CUafU1hsqKdX2UKGgGR0BxPrINmUW3aAdNZAFoCEdAlGo9QTEiuHV9lChoBkdAcFDGo73fymgHTYUBaAhHQJRqXsC1Z1V1fZQoaAZHQHCyZ/5LytpoB000AWgIR0CUarzJZGKAdX2UKGgGR0ByWFTuOS4faAdL+WgIR0CUbm1ejVQRdX2UKGgGR0BtMBesxO+JaAdNNQFoCEdAlG6GNedCmnV9lChoBkdAcIGmFajesWgHTVUBaAhHQJRwwEFGG211fZQoaAZHQHCMCHh0heRoB00xAWgIR0CUcU35eqrBdX2UKGgGR0BxwTEyckMTaAdNQQFoCEdAlHLBLsa86HV9lChoBkdAckkbKRuCPWgHTR0BaAhHQJRy9RR/EwZ1fZQoaAZHQC9d6E8JUo9oB0v0aAhHQJRzDbJwKjV1fZQoaAZHQHK/rUb1h9doB00+AWgIR0CUdKJwbVBldX2UKGgGR0Bw2oxN7BwdaAdNbwFoCEdAlHSw66reZXV9lChoBkdAcLYiItUXHmgHTVIBaAhHQJR1IDOkcjt1fZQoaAZHQHI2R3qzJIVoB00wAWgIR0CUdWiWmgrZdX2UKGgGR0BvoW938n/laAdNMAFoCEdAlHYhnSOR1XV9lChoBkdAcTFPf8/D+GgHTWMBaAhHQJR25HoX9BN1fZQoaAZHQHJSAc1fmcRoB01kAWgIR0CUdv8A7xNJdX2UKGgGR0BwI/duYQaraAdNQQFoCEdAlHrWOQyRCHV9lChoBkdAcPiF8ohIOGgHTRQBaAhHQJR7/sTnJT51fZQoaAZHQG1Sb7j1f3NoB01fAWgIR0CUfElMh5gPdX2UKGgGR0BFplQVKwpwaAdLyWgIR0CUfLyAxzq9dX2UKGgGR0BxBxFQVKwqaAdNQwFoCEdAlH1wRPGhmHV9lChoBkdAbN/YLb5/LGgHTRsBaAhHQJR+A1uR9w51fZQoaAZHQHDOrxqfvndoB00RAWgIR0CUfzaBZpztdX2UKGgGR0BxXh7RfF72aAdNNwFoCEdAlH9GOlwcYXV9lChoBkdAcMc/xlQMyGgHTVQBaAhHQJSAGugYgq51fZQoaAZHQHGShqGlANZoB01AAWgIR0CUgRayrxRVdX2UKGgGR0BdwwjdHlOoaAdN6ANoCEdAlIJd87ZFonV9lChoBkdAcaIPEKmbb2gHTTMBaAhHQJSDaAhB7eF1fZQoaAZHQHGGkug6EJ1oB01rAWgIR0CUhBkhRqGldX2UKGgGR0BieMeXAuZkaAdN6ANoCEdAlIQ309QoC3V9lChoBkdAcPGnQ6ZH/mgHTWEBaAhHQJSFn1schkl1fZQoaAZHQHAy2/JvHcVoB01+AWgIR0CUhgCNjslcdX2UKGgGR0BxfrqcEvCeaAdNHgFoCEdAlIkg9eQdS3V9lChoBkdAa8yvKU3XI2gHTUABaAhHQJSLiCkGiYd1fZQoaAZHQHIzldPci4doB00jAWgIR0CUjC3x4IKMdX2UKGgGR0BsBeOGTLW7aAdNXQFoCEdAlI3ke6qbSnV9lChoBkdAb+q6bONYKmgHTU0BaAhHQJSQrTw2ETR1fZQoaAZHQHDDtSuQp4NoB00pAWgIR0CUkXmsNlRQdX2UKGgGR0BvMXfqHGjsaAdNiwFoCEdAlJHui8FpwnV9lChoBkdAb5M4o7V8TmgHTWIBaAhHQJSktpWV/tp1fZQoaAZHQHIkFnIyTINoB01AAWgIR0CUpXjdpItldX2UKGgGR0BxRXbeuV5baAdNEgFoCEdAlKYUcKgIyHV9lChoBkdAcVmJqIrOJWgHTUEBaAhHQJSmOR6nivR1fZQoaAZHQHNAydvsJIFoB02wAWgIR0CUpsL+PzWgdX2UKGgGR0BwoUw482aVaAdNXAFoCEdAlKelvddmhHV9lChoBkdAc1EX4TK1X2gHTVkBaAhHQJSovkkrwvx1fZQoaAZHQHCMAlnh86VoB00lAWgIR0CUqRphF3INdX2UKGgGR0BvtLtu1ndwaAdNFAFoCEdAlKpRH09QoHV9lChoBkdAcGzay8jAz2gHTTEBaAhHQJSq6lk6Lfl1fZQoaAZHQHCqCB5HEuRoB03BAWgIR0CUqwSdvsJIdX2UKGgGR0Bui6AavRqoaAdNIQFoCEdAlKuowdsBQ3V9lChoBkdAcrbNpdrwfGgHTQwBaAhHQJSt9+G47Rx1fZQoaAZHQHEgnBYV6/toB00sAWgIR0CUrkCwr1/UdX2UKGgGR0BwvJrj5sTGaAdNSAFoCEdAlK8FefI0ZXV9lChoBkdAchxvLHMlkmgHTVYBaAhHQJSvFNDc/MZ1fZQoaAZHQG+jBAfMfRxoB00JAWgIR0CUr1npSrHVdX2UKGgGR0BycTc1wYLtaAdNPAFoCEdAlLBjKgZjx3V9lChoBkdAcYxcgyM1j2gHTTsBaAhHQJSw7sfJV811fZQoaAZHQG/pk5IYm9hoB01JAWgIR0CUsiQ3gk1NdX2UKGgGR0BwswliSaE0aAdNIQFoCEdAlLLNIkJKJ3V9lChoBkdAbjDcRlHz6WgHTVABaAhHQJSzVnOB19x1fZQoaAZHQHBVqbONYKZoB00NAWgIR0CUtFZf2K2sdX2UKGgGR0ByHMlb/wRXaAdNTwFoCEdAlLTI0VJti3V9lChoBkdAbip2alUIcGgHTTQBaAhHQJS1z0se4kN1fZQoaAZHQG9q1EuxrzpoB01OAWgIR0CUtgcBltj1dX2UKGgGR0BZ13KW9lEraAdN6ANoCEdAlLb4KD0163V9lChoBkdAbMS6oVEeAGgHTRcBaAhHQJS357LMcIZ1fZQoaAZHQHGagokRjBloB01cAWgIR0CUt/+M6zVudX2UKGgGR0BJ9JbD/EOzaAdL4WgIR0CUuGdHlOoHdX2UKGgGR0Bv/E8TzundaAdNJwFoCEdAlLixRqGlAXV9lChoBkdAcIV6XSjQA2gHTS4BaAhHQJS5rkKeCkJ1fZQoaAZHQHB+LUPQOWloB00rAWgIR0CUudStvGZNdX2UKGgGR0Bym87xNIsiaAdNRgFoCEdAlLpoku6ErXV9lChoBkdAcYkRIjGDMGgHTToBaAhHQJS7wTg2qDN1fZQoaAZHQHDjyEHt4RpoB00aAWgIR0CUvQfPX05EdX2UKGgGR0BtLKCDmKZVaAdNFQFoCEdAlL3wpazNU3V9lChoBkdAb2xJ4B3iaWgHTVcBaAhHQJS+F37k4m11fZQoaAZHQHIfaU3XI2hoB00bAWgIR0CUvsD/2kBTdX2UKGgGR0BvO6BwuM/AaAdNGAFoCEdAlMBafBeok3V9lChoBkdAcHEL7oB7u2gHTQoBaAhHQJTA9aJQ+EB1fZQoaAZHQHIj0MkQf6poB00UAWgIR0CUwtYAbQ1KdX2UKGgGR0Bwcn5Ec81XaAdNJwFoCEdAlMQDWGyooHV9lChoBkdAcoG0btJFs2gHTXABaAhHQJTEs/A0sOJ1fZQoaAZHQFF1P7el9BtoB0vGaAhHQJTE+kWRA8l1fZQoaAZHQHLJznFHavloB00PAWgIR0CUxVPSUkfLdX2UKGgGR0BwbGj0th/iaAdNOAFoCEdAlMV7VnVXm3V9lChoBkdAcPpgYgq3E2gHTeYBaAhHQJTGOmEXcg11fZQoaAZHQGx3vUBnzxxoB01dAWgIR0CUx3VG0/nodX2UKGgGR0BxeVtj0+TvaAdNVAFoCEdAlMiJmh/RV3V9lChoBkdAci3Nd7fHgmgHTVIBaAhHQJTJOowVTJh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}