File size: 2,872 Bytes
e3bb9e5
d5ba9d7
e3bb9e5
 
 
 
 
 
 
 
 
ff9f19f
 
 
 
 
 
be2c0c0
6be8dd1
be2c0c0
6be8dd1
d5ba9d7
 
 
 
 
242b4e9
d5ba9d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- Indonesian
- Chat
- Instruct
language:
- id
- en
base_model:
- meta-llama/Llama-3.2-3B-Instruct
datasets:
- NekoFi/alpaca-gpt4-indonesia-cleaned
pipeline_tag: text-generation
---

![image/jpeg](https://huggingface.co/xMaulana/FinMatcha-3B-Instruct/resolve/main/image.jpg)

# FinMatcha-3B-Instruct

FinMatcha is a powerful Indonesian-focused large language model (LLM) fine-tuned using the [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) base model. The model has been trained to handle a variety of natural language processing tasks such as text generation, summarization, translation, and question-answering, with a special emphasis on understanding and generating Indonesian text.

This model has been fine-tuned on a wide array of Indonesian datasets, making it adept at handling the nuances of the Indonesian language, from formal to colloquial speech. It also supports English for bilingual applications.

## Model Details

- **Finetuned from model**: [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct)
- **Dataset**: [NekoFi/alpaca-gpt4-indonesia-cleaned](https://huggingface.co/datasets/NekoFi/alpaca-gpt4-indonesia-cleaned)
- **Model Size**: 3B  
- **License**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0)  
- **Languages**: Indonesian, English

## How to use

### Installation

To use the Finmatcha model, install the required dependencies:

```bash
pip install transformers>=4.45
```

### Usage

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "xMaulana/FinMatcha-3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)

inputs = tokenizer("berikan aku resep nasi goreng super lezat", return_tensors="pt").to("cuda")
outputs = model.generate(inputs.input_ids, 
                          max_new_tokens = 1024,
                          pad_token_id=tokenizer.pad_token_id,
                          eos_token_id=tokenizer.eos_token_id,
                          temperature=0.7,
                          do_sample=True, 
                          top_k=5, 
                          top_p=0.9,
                          repetition_penalty=1.1
                         )
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Limitations

- The model is primarily focused on the Indonesian language and may not perform as well on non-Indonesian tasks.
- As with all LLMs, cultural and contextual biases can be present.

## License

The model is licensed under the [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0).

## Contributing

We welcome contributions to enhance and improve Finmatcha. Feel free to open issues or submit pull requests for improvements.