--- language: - id license: apache-2.0 tags: - Indonesian - Chat - Instruct - unsloth base_model: - meta-llama/Llama-3.2-3B-Instruct datasets: - NekoFi/alpaca-gpt4-indonesia-cleaned pipeline_tag: text-generation model-index: - name: FinMatcha-3B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 60.85 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 6.32 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 10.2 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 0.34 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 6.62 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 16.04 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=xMaulana/FinMatcha-3B-Instruct name: Open LLM Leaderboard --- ![image/jpeg](https://huggingface.co/xMaulana/FinMatcha-3B-Instruct/resolve/main/image.jpg) # FinMatcha-3B-Instruct FinMatcha is a powerful Indonesian-focused large language model (LLM) fine-tuned from the [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) base model. The model has been trained to handle a variety of conversation, with a special emphasis on understanding and generating Indonesian text. This model has been fine-tuned on a wide array of Indonesian datasets, making it adept at handling the nuances of the Indonesian language, from formal to colloquial speech. It also supports English for bilingual applications. ## Model Details - **Finetuned from model**: [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) - **Dataset**: [NekoFi/alpaca-gpt4-indonesia-cleaned](https://huggingface.co/datasets/NekoFi/alpaca-gpt4-indonesia-cleaned) - **Model Size**: 3B - **License**: [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) - **Languages**: Indonesian, English ## How to use ### Installation To use the Finmatcha model, install the required dependencies: ```bash pip install transformers>=4.45 ``` ### Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "xMaulana/FinMatcha-3B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer("Bagaimanakah sebuah negara dapat terbentuk?", return_tensors="pt").to("cuda") outputs = model.generate(inputs.input_ids, max_new_tokens = 2048, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, temperature=0.7, do_sample=True, top_k=5, top_p=0.9, repetition_penalty=1.1 ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Limitations - The model is primarily focused on the Indonesian language and may not perform as well on non-Indonesian tasks. - As with all LLMs, cultural and contextual biases can be present. ## License The model is licensed under the [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0). ## Contributing We welcome contributions to enhance and improve Finmatcha. Feel free to open issues or submit pull requests for improvements. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/xMaulana__FinMatcha-3B-Instruct-details) | Metric |Value| |-------------------|----:| |Avg. |24.13| |IFEval (0-Shot) |75.94| |BBH (3-Shot) |23.27| |MATH Lvl 5 (4-Shot)|12.16| |GPQA (0-shot) | 3.47| |MuSR (0-shot) | 5.40| |MMLU-PRO (5-shot) |24.54|