File size: 1,996 Bytes
a3f2ada |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- multilingual
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: model trenovan na en setu, nastaveni jazyka en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: xbilek25/train_set_1st_1000_de_en_de
type: mozilla-foundation/common_voice_11_0
args: 'config: ende, split: train'
metrics:
- name: Wer
type: wer
value: 19.711821211527152
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model trenovan na en setu, nastaveni jazyka en
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the xbilek25/train_set_1st_1000_de_en_de dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2246
- Wer: 19.7118
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0895 | 1.25 | 1000 | 0.2036 | 22.3976 |
| 0.0071 | 3.25 | 2000 | 0.2246 | 19.7118 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2
|