--- language: - multilingual license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: model trenovan na en_de_en simi setu, nastaveni jazyka en overeni3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: odpovidajici nazvu modelu type: mozilla-foundation/common_voice_11_0 args: 'config: ende, split: train' metrics: - name: Wer type: wer value: 31.315296008572197 --- # model trenovan na en_de_en simi setu, nastaveni jazyka en overeni3 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the odpovidajici nazvu modelu dataset. It achieves the following results on the evaluation set: - Loss: 0.2841 - Wer: 31.3153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.15.2