--- language: - eu license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 eu type: mozilla-foundation/common_voice_13_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 13.179958686054519 --- # Whisper Small Basque This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.2201 - Wer: 13.1800 ## Model description More information needed ## Intended uses & limitations If you need to use this model with [whisper.cpp](https://github.com/ggerganov/whisper.cpp), you can download the ggml file: [ggml-medium-eu.bin](https://huggingface.co/xezpeleta/whisper-medium-eu/blob/main/ggml-medium.eu.bin) ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 7000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4203 | 0.14 | 1000 | 0.4128 | 28.2656 | | 0.2693 | 0.29 | 2000 | 0.3240 | 22.0523 | | 0.2228 | 0.43 | 3000 | 0.2737 | 18.1437 | | 0.1002 | 1.1 | 4000 | 0.2554 | 16.3534 | | 0.0863 | 1.24 | 5000 | 0.2351 | 14.7880 | | 0.0636 | 1.39 | 6000 | 0.2251 | 13.5971 | | 0.0271 | 2.06 | 7000 | 0.2201 | 13.1800 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2