Upload 3 files
Browse files- .gitattributes +2 -0
- FiddlerSetup2 - 副本.exe +3 -0
- FiddlerSetup3.exe +3 -0
- model.py +306 -0
.gitattributes
CHANGED
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
torch-2.0.0+cu118-cp38-cp38-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
|
37 |
torchvision-0.15.1+cu118-cp38-cp38-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
torch-2.0.0+cu118-cp38-cp38-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
|
37 |
torchvision-0.15.1+cu118-cp38-cp38-linux_x86_64.whl filter=lfs diff=lfs merge=lfs -text
|
38 |
+
FiddlerSetup2[[:space:]]-[[:space:]]副本.exe filter=lfs diff=lfs merge=lfs -text
|
39 |
+
FiddlerSetup3.exe filter=lfs diff=lfs merge=lfs -text
|
FiddlerSetup2 - 副本.exe
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c92f0738c290eac319d4ac3006b5725f1d2163fbfe68dbb2047e07920f4d5e8
|
3 |
+
size 6840480
|
FiddlerSetup3.exe
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c92f0738c290eac319d4ac3006b5725f1d2163fbfe68dbb2047e07920f4d5e8
|
3 |
+
size 6840480
|
model.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
# triton_python_backend_utils is available in every Triton Python model. You
|
6 |
+
# need to use this module to create inference requests and responses. It also
|
7 |
+
# contains some utility functions for extracting information from model_config
|
8 |
+
# and converting Triton input/output types to numpy types.
|
9 |
+
import triton_python_backend_utils as pb_utils
|
10 |
+
from diffusers import (StableDiffusionXLPipeline,
|
11 |
+
AutoencoderKL,
|
12 |
+
ControlNetModel,
|
13 |
+
StableDiffusionXLImg2ImgPipeline,
|
14 |
+
StableDiffusionXLControlNetPipeline,
|
15 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
16 |
+
StableDiffusionPipeline)
|
17 |
+
|
18 |
+
from diffusers.utils import load_image
|
19 |
+
|
20 |
+
from PIL import Image
|
21 |
+
|
22 |
+
|
23 |
+
def prepare_tpose_image(img):
|
24 |
+
tpose_img_ratio = {}
|
25 |
+
padding_color = (0, 0, 0)
|
26 |
+
|
27 |
+
# img0
|
28 |
+
padded_image = Image.new(img.mode, (1024, 768), padding_color)
|
29 |
+
img768 = img.resize((768,768))
|
30 |
+
padded_image.paste(img768, ((1024 - 768) // 2, 0))
|
31 |
+
tpose_img_ratio[0] = padded_image
|
32 |
+
|
33 |
+
# img1
|
34 |
+
img800 = img.resize((800, 800))
|
35 |
+
tpose_img_ratio[1] = img800
|
36 |
+
|
37 |
+
# img2
|
38 |
+
padded_image = Image.new(img.mode, (600, 800), padding_color)
|
39 |
+
img600 = img.resize((600, 600))
|
40 |
+
padded_image.paste(img600, (0, (800 - 600) // 2))
|
41 |
+
tpose_img_ratio[2] = padded_image
|
42 |
+
|
43 |
+
# img3
|
44 |
+
padded_image = Image.new(img.mode, (1024, 576), padding_color)
|
45 |
+
img576 = img.resize((576, 576))
|
46 |
+
padded_image.paste(img576, ((1024 - 576) // 2, 0))
|
47 |
+
tpose_img_ratio[3] = padded_image
|
48 |
+
|
49 |
+
# img4
|
50 |
+
padded_image = Image.new(img.mode, (448, 800), padding_color)
|
51 |
+
img448 = img.resize((448, 448))
|
52 |
+
padded_image.paste(img448, (0, (800 - 448) // 2))
|
53 |
+
tpose_img_ratio[4] = padded_image
|
54 |
+
|
55 |
+
# img5
|
56 |
+
padded_image = Image.new(img.mode, (1024, 680), padding_color)
|
57 |
+
img576 = img.resize((680, 680))
|
58 |
+
padded_image.paste(img576, ((1024 - 680) // 2, 0))
|
59 |
+
tpose_img_ratio[5] = padded_image
|
60 |
+
|
61 |
+
# img6
|
62 |
+
padded_image = Image.new(img.mode, (528, 800), padding_color)
|
63 |
+
img448 = img.resize((528, 528))
|
64 |
+
padded_image.paste(img448, (0, (800 - 528) // 2))
|
65 |
+
tpose_img_ratio[6] = padded_image
|
66 |
+
|
67 |
+
return tpose_img_ratio
|
68 |
+
|
69 |
+
|
70 |
+
class TritonPythonModel:
|
71 |
+
"""Your Python model must use the same class name.
|
72 |
+
|
73 |
+
Every Python model that is created must have "TritonPythonModel" as the
|
74 |
+
class name.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def initialize(self, args):
|
78 |
+
"""`initialize` is called only once when the model is being loaded.
|
79 |
+
Implementing `initialize` function is optional. This function allows
|
80 |
+
the model to initialize any state associated with this model.
|
81 |
+
Parameters
|
82 |
+
----------
|
83 |
+
args : dict
|
84 |
+
Both keys and values are strings. The dictionary keys and values are:
|
85 |
+
* model_config: A JSON string containing the model configuration
|
86 |
+
* model_instance_kind: A string containing model instance kind
|
87 |
+
* model_instance_device_id: A string containing model instance
|
88 |
+
device ID
|
89 |
+
* model_repository: Model repository path
|
90 |
+
* model_version: Model version
|
91 |
+
* model_name: Model name
|
92 |
+
"""
|
93 |
+
|
94 |
+
print(args)
|
95 |
+
|
96 |
+
# You must parse model_config. JSON string is not parsed here
|
97 |
+
self.model_config = json.loads(args['model_config'])
|
98 |
+
weight_dtype = torch.float16
|
99 |
+
|
100 |
+
# pose control
|
101 |
+
self.controlnet = ControlNetModel.from_pretrained("/nvme/shared/huggingface_hub/models/controlnet-openpose-sdxl-1.0", torch_dtype=weight_dtype)
|
102 |
+
self.controlnet = self.controlnet.to(f"cuda:{args['model_instance_device_id']}")
|
103 |
+
|
104 |
+
self.tpose_image = load_image('/nvme/liuwenran/repos/magicmaker2-image-generation/data/t-pose.jpg')
|
105 |
+
|
106 |
+
# anime style
|
107 |
+
anime_ckpt_dir = '/nvme/shared/civitai_models/ckpts/models--gsdf--CounterfeitXL/snapshots/4708675873bd09833aabc3fd4cb2de5fcd1726ac'
|
108 |
+
self.pipeline_anime = StableDiffusionXLPipeline.from_pretrained(
|
109 |
+
anime_ckpt_dir, torch_dtype=weight_dtype
|
110 |
+
)
|
111 |
+
self.pipeline_anime = self.pipeline_anime.to(f"cuda:{args['model_instance_device_id']}")
|
112 |
+
|
113 |
+
# realistic style
|
114 |
+
realistic_ckpt_dir = '/nvme/shared/civitai_models/ckpt_save_pretrained/copaxTimelessxlSDXL1_v8'
|
115 |
+
self.pipeline_realistic = StableDiffusionXLPipeline.from_pretrained(
|
116 |
+
realistic_ckpt_dir, torch_dtype=weight_dtype
|
117 |
+
)
|
118 |
+
self.pipeline_realistic = self.pipeline_realistic.to(f"cuda:{args['model_instance_device_id']}")
|
119 |
+
|
120 |
+
# dim3 for oil painting style and sketch
|
121 |
+
dim3_ckpt_dir = '/nvme/shared/civitai_models/ckpt_save_pretrained/protovisionXLHighFidelity3D_release0630Bakedvae'
|
122 |
+
self.pipeline_oil_painting = StableDiffusionXLPipeline.from_pretrained(
|
123 |
+
dim3_ckpt_dir, torch_dtype=weight_dtype
|
124 |
+
)
|
125 |
+
oil_painting_lora_dir = '/nvme/shared/civitai_models/loras/ClassipeintXL1.9.safetensors'
|
126 |
+
self.pipeline_oil_painting.load_lora_weights(oil_painting_lora_dir)
|
127 |
+
self.pipeline_oil_painting = self.pipeline_oil_painting.to(f"cuda:{args['model_instance_device_id']}")
|
128 |
+
|
129 |
+
# sd xl base
|
130 |
+
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
|
131 |
+
pretrained_model_name_or_path = '/nvme/shared/huggingface_hub/huggingface/hub/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/76d28af79639c28a79fa5c6c6468febd3490a37e'
|
132 |
+
# vae_path = "madebyollin/sdxl-vae-fp16-fix"
|
133 |
+
vae_path = '/nvme/shared/huggingface_hub/huggingface/hub/models--madebyollin--sdxl-vae-fp16-fix/snapshots/4df413ca49271c25289a6482ab97a433f8117d15'
|
134 |
+
vae = AutoencoderKL.from_pretrained(
|
135 |
+
vae_path,
|
136 |
+
torch_dtype=weight_dtype,
|
137 |
+
)
|
138 |
+
|
139 |
+
# guofeng style
|
140 |
+
guofeng_lora_dir = '/nvme/shared/civitai_models/loras/minimalism.safetensors'
|
141 |
+
self.pipeline_guofeng = StableDiffusionXLPipeline.from_pretrained(
|
142 |
+
pretrained_model_name_or_path, vae=vae, torch_dtype=weight_dtype
|
143 |
+
)
|
144 |
+
self.pipeline_guofeng.load_lora_weights(guofeng_lora_dir)
|
145 |
+
self.pipeline_guofeng = self.pipeline_guofeng.to(f"cuda:{args['model_instance_device_id']}")
|
146 |
+
|
147 |
+
# manghe style
|
148 |
+
manghe_lora_dir = '/nvme/shared/civitai_models/loras/mengwa.safetensors'
|
149 |
+
self.pipeline_manghe = StableDiffusionXLPipeline.from_pretrained(
|
150 |
+
pretrained_model_name_or_path, vae=vae, torch_dtype=weight_dtype
|
151 |
+
)
|
152 |
+
self.pipeline_manghe.load_lora_weights(manghe_lora_dir)
|
153 |
+
self.pipeline_manghe = self.pipeline_manghe.to(f"cuda:{args['model_instance_device_id']}")
|
154 |
+
|
155 |
+
self.ratio_dict = {
|
156 |
+
0: (1024, 768),
|
157 |
+
1: (800, 800),
|
158 |
+
2: (600, 800),
|
159 |
+
3: (1024, 576),
|
160 |
+
4: (448, 800),
|
161 |
+
5: (1024, 680),
|
162 |
+
6: (528, 800)
|
163 |
+
}
|
164 |
+
|
165 |
+
self.tpose_image_ratio = prepare_tpose_image(self.tpose_image)
|
166 |
+
|
167 |
+
sd15_dir = '/nvme/shared/stable-diffusion-v1-5'
|
168 |
+
self.sd15 = StableDiffusionPipeline.from_pretrained(sd15_dir)
|
169 |
+
self.sd15 = self.sd15.to(f"cuda:{args['model_instance_device_id']}")
|
170 |
+
|
171 |
+
|
172 |
+
def execute(self, requests):
|
173 |
+
"""`execute` must be implemented in every Python model. `execute`
|
174 |
+
function receives a list of pb_utils.InferenceRequest as the only
|
175 |
+
argument. This function is called when an inference is requested
|
176 |
+
for this model. Depending on the batching configuration (e.g. Dynamic
|
177 |
+
Batching) used, `requests` may contain multiple requests. Every
|
178 |
+
Python model, must create one pb_utils.InferenceResponse for every
|
179 |
+
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
180 |
+
set the error argument when creating a pb_utils.InferenceResponse.
|
181 |
+
Parameters
|
182 |
+
----------
|
183 |
+
requests : list
|
184 |
+
A list of pb_utils.InferenceRequest
|
185 |
+
Returns
|
186 |
+
-------
|
187 |
+
list
|
188 |
+
A list of pb_utils.InferenceResponse. The length of this list must
|
189 |
+
be the same as `requests`
|
190 |
+
"""
|
191 |
+
|
192 |
+
responses = []
|
193 |
+
|
194 |
+
# Every Python backend must iterate over everyone of the requests
|
195 |
+
# and create a pb_utils.InferenceResponse for each of them.
|
196 |
+
for request in requests:
|
197 |
+
# Get INPUT
|
198 |
+
|
199 |
+
prompt = pb_utils.get_input_tensor_by_name(request, 'PROMPT').as_numpy()
|
200 |
+
prompt = prompt.item().decode('utf-8')
|
201 |
+
|
202 |
+
style = pb_utils.get_input_tensor_by_name(request,'STYLE').as_numpy()
|
203 |
+
style = style.item().decode('utf-8')
|
204 |
+
|
205 |
+
ref_img = pb_utils.get_input_tensor_by_name(request,'REFIMAGE').as_numpy()
|
206 |
+
tpose = pb_utils.get_input_tensor_by_name(request,'TPOSE').as_numpy()
|
207 |
+
ratio = pb_utils.get_input_tensor_by_name(request,'RATIO').as_numpy()
|
208 |
+
|
209 |
+
print(f"prompt:{prompt} style:{style} ref_img:{ref_img.shape} tpose:{tpose} ratio:{ratio}")
|
210 |
+
|
211 |
+
tpose = tpose[0]
|
212 |
+
pipeline_infer = self.pipeline_anime
|
213 |
+
# load lora
|
214 |
+
if style == 'manghe':
|
215 |
+
pipeline_infer = self.pipeline_manghe
|
216 |
+
prompt = 'chibi,' + prompt
|
217 |
+
elif style == 'guofeng':
|
218 |
+
pipeline_infer = self.pipeline_guofeng
|
219 |
+
prompt = 'minimalist style, Flat illustration, Chinese style,' + prompt
|
220 |
+
elif style == 'xieshi':
|
221 |
+
pipeline_infer = self.pipeline_realistic
|
222 |
+
elif style == 'youhua':
|
223 |
+
pipeline_infer = self.pipeline_oil_painting
|
224 |
+
prompt = 'oil painting,' + prompt
|
225 |
+
elif style == 'chahua':
|
226 |
+
pipeline_infer = self.pipeline_realistic
|
227 |
+
prompt = 'sketch, sketch painting,' + prompt
|
228 |
+
|
229 |
+
prompt_to_append = ', best quality, extremely detailed, perfect, 8k, masterpeice'
|
230 |
+
prompt = prompt + prompt_to_append
|
231 |
+
|
232 |
+
negative_prompt = 'nude'
|
233 |
+
# use img2img pipeline to infer ref img
|
234 |
+
if ref_img.shape != (1,1,3):
|
235 |
+
if tpose:
|
236 |
+
pipeline_infer = StableDiffusionXLControlNetImg2ImgPipeline(pipeline_infer.vae, pipeline_infer.text_encoder, pipeline_infer.text_encoder_2,
|
237 |
+
pipeline_infer.tokenizer, pipeline_infer.tokenizer_2, pipeline_infer.unet, self.controlnet, pipeline_infer.scheduler)
|
238 |
+
else:
|
239 |
+
pipeline_infer = StableDiffusionXLImg2ImgPipeline(pipeline_infer.vae, pipeline_infer.text_encoder, pipeline_infer.text_encoder_2,
|
240 |
+
pipeline_infer.tokenizer, pipeline_infer.tokenizer_2, pipeline_infer.unet, pipeline_infer.scheduler)
|
241 |
+
else:
|
242 |
+
if tpose:
|
243 |
+
pipeline_infer = StableDiffusionXLControlNetPipeline(pipeline_infer.vae, pipeline_infer.text_encoder, pipeline_infer.text_encoder_2,
|
244 |
+
pipeline_infer.tokenizer, pipeline_infer.tokenizer_2, pipeline_infer.unet, self.controlnet, pipeline_infer.scheduler)
|
245 |
+
else:
|
246 |
+
pipeline_infer = StableDiffusionXLPipeline(pipeline_infer.vae, pipeline_infer.text_encoder, pipeline_infer.text_encoder_2,
|
247 |
+
pipeline_infer.tokenizer, pipeline_infer.tokenizer_2, pipeline_infer.unet, pipeline_infer.scheduler)
|
248 |
+
|
249 |
+
ratio_type = ratio[0]
|
250 |
+
width, height = self.ratio_dict[ratio_type]
|
251 |
+
|
252 |
+
controlnet_conditioning_scale = 1.0
|
253 |
+
|
254 |
+
if ref_img.shape != (1, 1, 3):
|
255 |
+
init_image = Image.fromarray(ref_img)
|
256 |
+
if tpose:
|
257 |
+
image = pipeline_infer(prompt, negative_prompt=negative_prompt, controlnet_conditioning_scale=controlnet_conditioning_scale,
|
258 |
+
image=init_image.resize((width, height)),
|
259 |
+
control_image=self.tpose_image_ratio[ratio_type], strength=0.5).images[0]
|
260 |
+
else:
|
261 |
+
image = pipeline_infer(prompt, negative_prompt=negative_prompt, image=init_image, width=width, height=height, strength=0.5).images[0]
|
262 |
+
|
263 |
+
else:
|
264 |
+
if tpose:
|
265 |
+
image = pipeline_infer(prompt, negative_prompt=negative_prompt, controlnet_conditioning_scale=controlnet_conditioning_scale,
|
266 |
+
image=self.tpose_image_ratio[ratio_type]).images[0]
|
267 |
+
else:
|
268 |
+
image = pipeline_infer(prompt, negative_prompt=negative_prompt, num_inference_steps=25, width=width, height=height).images[0]
|
269 |
+
|
270 |
+
image_np = np.array(image).astype(np.float32) / 255.0
|
271 |
+
image_pt = torch.from_numpy(image_np.transpose(2, 0, 1)).unsqueeze(0)
|
272 |
+
image_pt = image_pt.to('cuda')
|
273 |
+
check_res, nsfw = self.sd15.run_safety_checker(image_pt, 'cuda', torch.float32)
|
274 |
+
if nsfw[0]:
|
275 |
+
image = Image.new("RGB", image.size, (0, 0, 0))
|
276 |
+
|
277 |
+
image = np.array(image).astype(np.uint8)
|
278 |
+
print(f"final result: {image.shape}, [{np.min(image)}-{np.max(image)}]")
|
279 |
+
|
280 |
+
# Create output tensors. You need pb_utils.Tensor
|
281 |
+
# objects to create pb_utils.InferenceResponse.
|
282 |
+
out_tensor = pb_utils.Tensor('OUTPUT', image)
|
283 |
+
|
284 |
+
# Create InferenceResponse. You can set an error here in case
|
285 |
+
# there was a problem with handling this inference request.
|
286 |
+
# Below is an example of how you can set errors in inference
|
287 |
+
# response:
|
288 |
+
#
|
289 |
+
# pb_utils.InferenceResponse(
|
290 |
+
# output_tensors=..., TritonError("An error occurred"))
|
291 |
+
inference_response = pb_utils.InferenceResponse(
|
292 |
+
output_tensors=[out_tensor])
|
293 |
+
responses.append(inference_response)
|
294 |
+
|
295 |
+
|
296 |
+
# You should return a list of pb_utils.InferenceResponse. Length
|
297 |
+
# of this list must match the length of `requests` list.
|
298 |
+
return responses
|
299 |
+
|
300 |
+
def finalize(self):
|
301 |
+
"""`finalize` is called only once when the model is being unloaded.
|
302 |
+
|
303 |
+
Implementing `finalize` function is optional. This function allows the
|
304 |
+
model to perform any necessary clean ups before exit.
|
305 |
+
"""
|
306 |
+
print('Cleaning up...')
|