File size: 2,237 Bytes
476deea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: diffusers
license: cc-by-nc-2.0
base_model:
- black-forest-labs/FLUX.1-Fill-dev
pipeline_tag: image-to-image
tags:
- tryon
- vto
---

# Model Card for CAT-Tryoff-Flux

CAT-Tryoff-Flux is an advanced tryoff model. It used the same method of (CATVTON-FLUX)[https://huggingface.co/xiaozaa/catvton-flux-alpha]. This model can extract and reconstruct the front view of clothing items from images of people wearing them.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** [X/Twitter:Black Magic An](https://x.com/MrsZaaa)

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [github](https://github.com/nftblackmagic/catvton-flux)

## Uses

The model is designed for virtual try-off applications, allowing users to visualize how different garments would look on a person. It can be used directly through command-line interface with the following parameters:

Input person image
Person mask
Garment image
Random seed (optional)

## How to Get Started with the Model

```
transformer = FluxTransformer2DModel.from_pretrained(
    "xiaozaa/cat-tryoff-flux", 
    torch_dtype=torch.bfloat16
)
pipe = FluxFillPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    transformer=transformer,
    torch_dtype=torch.bfloat16
).to("cuda")



```

## Training Details

### Training Data

VITON-HD dataset

### Training Procedure

Finetuning Flux1-dev-fill


## Evaluation

#### Summary



**BibTeX:**
```
@misc{chong2024catvtonconcatenationneedvirtual,
 title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models}, 
 author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang},
 year={2024},
 eprint={2407.15886},
 archivePrefix={arXiv},
 primaryClass={cs.CV},
 url={https://arxiv.org/abs/2407.15886}, 
}
@article{lhhuang2024iclora,
  title={In-Context LoRA for Diffusion Transformers},
  author={Huang, Lianghua and Wang, Wei and Wu, Zhi-Fan and Shi, Yupeng and Dou, Huanzhang and Liang, Chen and Feng, Yutong and Liu, Yu and Zhou, Jingren},
  journal={arXiv preprint arxiv:2410.23775},
  year={2024}
}
```