--- license: apache-2.0 datasets: - squad - adversarial_qa language: - en metrics: - exact_match - f1 base_model: - albert/albert-base-v2 model: xichenn/albert-base-v2-squad-fp16 library_name: transformers model-index: - name: xichenn/albert-base-v2-squad-fp16 results: - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 84.68 name: Exact Match verified: true - type: f1 value: 91.4 name: F1 verified: true --- # albert-base-v2-squad-fp16 This model is a fp16 quantized version of [albert-base-v2-squad](https://huggingface.co/xichenn/albert-base-v2-squad). It achieves the following results on the SQuAD 1.1 evaluation set (no model accuracy loss compared to fp32): - Exact Match(EM): 84.68 - F1: 91.40 ## Inference API You can test the model directly using the Hugging Face Inference API: ```python from transformers import pipeline # Load the pipeline qa_pipeline = pipeline("question-answering", model="xichenn/albert-base-v2-squad-fp16") # Run inference result = qa_pipeline(question="What is the capital of France?", context="France is a country in Europe. Its capital is Paris.") print(result) ```