File size: 1,283 Bytes
a8009b2
 
 
d2980b3
 
a8009b2
 
 
 
 
 
 
14fa938
46db420
d2980b3
9d3305d
d2980b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14fa938
d2980b3
 
c3ce025
 
 
 
43cc09b
c3ce025
 
aab0ee7
 
87d605b
aab0ee7
1bc6f6c
aab0ee7
 
 
 
 
 
 
 
957e2ab
aab0ee7
957e2ab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
datasets:
- squad
- adversarial_qa
language:
- en
metrics:
- exact_match
- f1
base_model:
- albert/albert-base-v2
model: xichenn/albert-base-v2-squad
library_name: transformers
model-index:
- name: xichenn/albert-base-v2-squad
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad
      type: squad
      config: plain_text
      split: validation
    metrics:
    - type: exact_match
      value: 84.68
      name: Exact Match
      verified: true
    - type: f1
      value: 91.4
      name: F1
      verified: true
---

# albert-base-v2-squad

This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert/albert-base-v2) on the SQuAD 1.1 and adversarial_qa datasets.
It achieves the following results on the SQuAD 1.1 evaluation set:
- Exact Match(EM): 84.68
- F1: 91.40

## Inference API

You can test the model directly using the Hugging Face Inference API:

```python
from transformers import pipeline

# Load the pipeline
qa_pipeline = pipeline("question-answering", model="xichenn/albert-base-v2-squad")

# Run inference
result = qa_pipeline(question="What is the capital of France?", context="France is a country in Europe. Its capital is Paris.")

print(result)
```