File size: 1,283 Bytes
a8009b2 d2980b3 a8009b2 14fa938 46db420 d2980b3 9d3305d d2980b3 14fa938 d2980b3 c3ce025 43cc09b c3ce025 aab0ee7 87d605b aab0ee7 1bc6f6c aab0ee7 957e2ab aab0ee7 957e2ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
datasets:
- squad
- adversarial_qa
language:
- en
metrics:
- exact_match
- f1
base_model:
- albert/albert-base-v2
model: xichenn/albert-base-v2-squad
library_name: transformers
model-index:
- name: xichenn/albert-base-v2-squad
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 84.68
name: Exact Match
verified: true
- type: f1
value: 91.4
name: F1
verified: true
---
# albert-base-v2-squad
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert/albert-base-v2) on the SQuAD 1.1 and adversarial_qa datasets.
It achieves the following results on the SQuAD 1.1 evaluation set:
- Exact Match(EM): 84.68
- F1: 91.40
## Inference API
You can test the model directly using the Hugging Face Inference API:
```python
from transformers import pipeline
# Load the pipeline
qa_pipeline = pipeline("question-answering", model="xichenn/albert-base-v2-squad")
# Run inference
result = qa_pipeline(question="What is the capital of France?", context="France is a country in Europe. Its capital is Paris.")
print(result)
``` |