File size: 1,749 Bytes
6fcff9b
 
971b1cc
6fcff9b
 
 
 
 
 
 
 
 
 
 
 
 
 
971b1cc
6fcff9b
971b1cc
 
6fcff9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
971b1cc
 
 
6fcff9b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of [nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat](https://huggingface.co/nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0955
- Accuracy: 0.9682

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.5179        | 0.9979 | 351  | 0.1549          | 0.9502   |
| 0.3977        | 1.9986 | 703  | 0.1160          | 0.963    |
| 0.3058        | 2.9936 | 1053 | 0.0955          | 0.9682   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1