xma8 commited on
Commit
a8ce907
·
1 Parent(s): fb377cf

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.89 +/- 14.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b56969430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b569694c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b56969550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b569695e0>", "_build": "<function ActorCriticPolicy._build at 0x7f4b56969670>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b56969700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b56969790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b56969820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b569698b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b56969940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b569699d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4b5694fd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672890180346216226, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMqRtD7YtBA/FAw3vo/oVL5smR8+/Q2FvQAAAAAAAAAAxs4SvgP7TT/WMxQ+DHKyvvbWJDyqLNE8AAAAAAAAAAAzZEQ9ewKkuir6irmX9XO08/oEOgLLnzgAAIA/AACAP6Zgnb0UfIW6FmmAu2w0s7aq5Hw61LqVOgAAgD8AAIA/s7FnvQXKoLtreve76omDPK7U7jza1mC9AACAPwAAgD8oBYK+IpVfP2EoyD2tp7i+hoVKvvW+Mj4AAAAAAAAAABou6b18+IE+S1TVPbm/k76WYto8EvDQvAAAAAAAAAAAQCBZPnIaqj9u0wU/oXKWvm51lD4VKbs9AAAAAAAAAAAANTw+plmtPwFGhj7gO6G+DNScPvUD/D0AAAAAAAAAAM1sv7z2BEG65PIbt6uUkzEsOT67x1Q1NgAAgD8AAIA/GuGOPbvlqz0QcOi8Pspsvgg+RT2w36C8AAAAAAAAAABmHwy99hxfun3F/Lv1G1U2CoadOvX4vrUAAIA/AACAPwDlmL2P0jS6OlPWOqKlVjVALR87zsj8uQAAgD8AAIA/zejNvT/GQD/ecS8+UXeDvqK4E7vqid09AAAAAAAAAADNTMU8q5fuPShW37xdYCa+qh0ePKqHnLwAAAAAAAAAADPZ6TxPRBA+CtjfvQ+Qjb7xPg29xamhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ3Bcxg1QckCUhpRSlIwBbJRNigGMAXSUR0CXiduvECNkdX2UKGgGaAloD0MIFLNeDGXPYECUhpRSlGgVTegDaBZHQJeMCrmyPdV1fZQoaAZoCWgPQwjek4eF2kplQJSGlFKUaBVN6ANoFkdAl6FRxPwd83V9lChoBmgJaA9DCCO8PQiBXGJAlIaUUpRoFU3oA2gWR0CXpI8MNMGpdX2UKGgGaAloD0MIXMgjuJEWZUCUhpRSlGgVTegDaBZHQJeraLLpzLh1fZQoaAZoCWgPQwgZrDjV2qtoQJSGlFKUaBVN6ANoFkdAl6wqIBRyfnV9lChoBmgJaA9DCEaVYdwNNWJAlIaUUpRoFU3oA2gWR0CXr2zxwyZbdX2UKGgGaAloD0MISriQR/ACZUCUhpRSlGgVTegDaBZHQJevthScbzd1fZQoaAZoCWgPQwiA8Qwaek5lQJSGlFKUaBVN6ANoFkdAl7GzB2wFDHV9lChoBmgJaA9DCBB5y9WP0mJAlIaUUpRoFU3oA2gWR0CXsp029+PSdX2UKGgGaAloD0MIQL0ZNV/xcECUhpRSlGgVTXwBaBZHQJfBNRHf/FR1fZQoaAZoCWgPQwg/qfbp+EFmQJSGlFKUaBVN6ANoFkdAl8GGy5Zr6HV9lChoBmgJaA9DCHRgOUIGoGJAlIaUUpRoFU3oA2gWR0CXxHW7e2uxdX2UKGgGaAloD0MIYXE48ysaaECUhpRSlGgVTegDaBZHQJfID7xd6cB1fZQoaAZoCWgPQwgcz2dAPYRhQJSGlFKUaBVN6ANoFkdAl84beZXuE3V9lChoBmgJaA9DCOxLNh5sdmBAlIaUUpRoFU3oA2gWR0CX0VFQVKwqdX2UKGgGaAloD0MIyM9GrhsqY0CUhpRSlGgVTegDaBZHQJfSYG1QZXN1fZQoaAZoCWgPQwhhGoaPiLVCQJSGlFKUaBVNBgFoFkdAl9OmS+xnnXV9lChoBmgJaA9DCNTWiGCcumRAlIaUUpRoFU3oA2gWR0CX1UZ4fOlgdX2UKGgGaAloD0MIPjxLkJF1ZECUhpRSlGgVTegDaBZHQJfXSTibUgB1fZQoaAZoCWgPQwjgEKrU7DdcQJSGlFKUaBVN6ANoFkdAl9lJ4KQaJnV9lChoBmgJaA9DCPK1Z5YEwmdAlIaUUpRoFU3oA2gWR0CX73O6unuRdX2UKGgGaAloD0MIiEZ3EDs1ZECUhpRSlGgVTegDaBZHQJf2lg9eQdV1fZQoaAZoCWgPQwiN8PYghNRiQJSGlFKUaBVN6ANoFkdAl/nncclw+HV9lChoBmgJaA9DCNY2xeOiUGVAlIaUUpRoFU3oA2gWR0CX+i6dUbT+dX2UKGgGaAloD0MIpdsSuWD9ZUCUhpRSlGgVTegDaBZHQJf8FZowmE51fZQoaAZoCWgPQwin591Y0AJnQJSGlFKUaBVN6ANoFkdAl/ze7L+xW3V9lChoBmgJaA9DCLTjht9Nl0lAlIaUUpRoFUvBaBZHQJgDwRcu8K51fZQoaAZoCWgPQwiw5CoWPwdkQJSGlFKUaBVN6ANoFkdAmAonWWhRInV9lChoBmgJaA9DCK1NY3st7mFAlIaUUpRoFU3oA2gWR0CYCm+H8CPqdX2UKGgGaAloD0MIeSRenk5JZUCUhpRSlGgVTegDaBZHQJgQafI0ZWJ1fZQoaAZoCWgPQwiYwK27efNvQJSGlFKUaBVN4AFoFkdAmBBt6HCXQnV9lChoBmgJaA9DCO5fWWlS2hRAlIaUUpRoFUvraBZHQJgQ4tOEdvN1fZQoaAZoCWgPQwhYxRuZRypAQJSGlFKUaBVLwGgWR0CYFSTPjXFtdX2UKGgGaAloD0MIPZtVnys6Y0CUhpRSlGgVTegDaBZHQJgWD+yZ8a51fZQoaAZoCWgPQwg1JsRcUtNGQJSGlFKUaBVL8WgWR0CYF3DNQj2SdX2UKGgGaAloD0MIpPyk2iduZECUhpRSlGgVTegDaBZHQJgY53HJcPh1fZQoaAZoCWgPQwgZPEz7Zg1nQJSGlFKUaBVN6ANoFkdAmBnKP4mCy3V9lChoBmgJaA9DCNEhcCRQ/WJAlIaUUpRoFU3oA2gWR0CYGutyxRl6dX2UKGgGaAloD0MIih2NQ33qY0CUhpRSlGgVTegDaBZHQJgcPoxHoX91fZQoaAZoCWgPQwhZGCKnL/5kQJSGlFKUaBVN6ANoFkdAmB4OyE+PinV9lChoBmgJaA9DCLLUer/RI2RAlIaUUpRoFU3oA2gWR0CYH8XXyy2QdX2UKGgGaAloD0MIsaayKOyMQUCUhpRSlGgVS/RoFkdAmCBCOBDohnV9lChoBmgJaA9DCClZTkJpXWZAlIaUUpRoFU3oA2gWR0CYNZbzK9wndX2UKGgGaAloD0MIo3kAi/xJYUCUhpRSlGgVTegDaBZHQJhBHU2DQJJ1fZQoaAZoCWgPQwgmi/uPTB9mQJSGlFKUaBVN6ANoFkdAmENZFkQPJHV9lChoBmgJaA9DCJyMKsO4IV9AlIaUUpRoFU3oA2gWR0CYRE84xUNsdX2UKGgGaAloD0MIcT0K16PqTECUhpRSlGgVS9NoFkdAmE+mg3974XV9lChoBmgJaA9DCAu3fCSlCWdAlIaUUpRoFU3oA2gWR0CYWgR9w3o+dX2UKGgGaAloD0MIxyk6ksvvZUCUhpRSlGgVTegDaBZHQJhaCQ+2Vml1fZQoaAZoCWgPQwhqSx3kdfZkQJSGlFKUaBVN6ANoFkdAmFqAXEZR9HV9lChoBmgJaA9DCFMI5BIH/HBAlIaUUpRoFU17AmgWR0CYWtYjSofkdX2UKGgGaAloD0MIIA2nzE2/ZECUhpRSlGgVTegDaBZHQJhfYam4y451fZQoaAZoCWgPQwhBnfLoRlJgQJSGlFKUaBVN6ANoFkdAmGDRtP557nV9lChoBmgJaA9DCBqJ0Ai2PmBAlIaUUpRoFU3oA2gWR0CYYmjaPCEYdX2UKGgGaAloD0MIMGR1q2f8YECUhpRSlGgVTegDaBZHQJhjWOZLIxR1fZQoaAZoCWgPQwj678Frl0tiQJSGlFKUaBVN6ANoFkdAmGSXXumaY3V9lChoBmgJaA9DCHTTZpyGqmZAlIaUUpRoFU3oA2gWR0CYZkMaCL/CdX2UKGgGaAloD0MIARb59UO7Y0CUhpRSlGgVTegDaBZHQJhoOWPcSGt1fZQoaAZoCWgPQwj5odKIGdxlQJSGlFKUaBVN6ANoFkdAmGpdKEnLJXV9lChoBmgJaA9DCDVB1H2ASGRAlIaUUpRoFU3oA2gWR0CYavM2m52AdX2UKGgGaAloD0MIe8A8ZMqkU0CUhpRSlGgVTSEBaBZHQJiBRRxcVxl1fZQoaAZoCWgPQwgdxw+VRspkQJSGlFKUaBVN6ANoFkdAmI2uKXOW0XV9lChoBmgJaA9DCM7BM6FJMWdAlIaUUpRoFU3oA2gWR0CYkW/wiJO4dX2UKGgGaAloD0MI63Hfap2wY0CUhpRSlGgVTegDaBZHQJiiJW+49X91fZQoaAZoCWgPQwjIfat14hZRQJSGlFKUaBVL+2gWR0CYom336AOKdX2UKGgGaAloD0MILT9wlacsZ0CUhpRSlGgVTegDaBZHQJit4h6jWTZ1fZQoaAZoCWgPQwiPNSOD3KJeQJSGlFKUaBVN6ANoFkdAmK3mce8wpXV9lChoBmgJaA9DCCU8odcfrmRAlIaUUpRoFU3oA2gWR0CYrl+SKWLQdX2UKGgGaAloD0MIxAWgUbqwZUCUhpRSlGgVTegDaBZHQJiut74SHuZ1fZQoaAZoCWgPQwi/Khcq/1ZlQJSGlFKUaBVN6ANoFkdAmLSGSU1Q7HV9lChoBmgJaA9DCLNCke5nYmdAlIaUUpRoFU3oA2gWR0CYtfkgwGnodX2UKGgGaAloD0MI0el5N5Y8ZECUhpRSlGgVTegDaBZHQJi26xKQJX11fZQoaAZoCWgPQwj3V4/71vZiQJSGlFKUaBVN6ANoFkdAmLgn/giu+3V9lChoBmgJaA9DCLb4FADj1GJAlIaUUpRoFU3oA2gWR0CYuY6asp5NdX2UKGgGaAloD0MIcO6vHve1LECUhpRSlGgVS/JoFkdAmLnqc7Qsw3V9lChoBmgJaA9DCAa+olsv92VAlIaUUpRoFU3oA2gWR0CYu1XfIjnndX2UKGgGaAloD0MIzeodbgcCZECUhpRSlGgVTegDaBZHQJi9LG4qgAZ1fZQoaAZoCWgPQwiyne+nxgBmQJSGlFKUaBVN6ANoFkdAmL2xEF4cFXV9lChoBmgJaA9DCGuduBwvNmhAlIaUUpRoFU3oA2gWR0CYwFcBEKE4dX2UKGgGaAloD0MIJ6JfW3+hckCUhpRSlGgVTaEBaBZHQJjbU5bQkX11fZQoaAZoCWgPQwjdJAaBlSRlQJSGlFKUaBVN6ANoFkdAmOEakEcKgXV9lChoBmgJaA9DCO0seqcCDWBAlIaUUpRoFU3oA2gWR0CY7ZL/CIk7dX2UKGgGaAloD0MIacai6exXXUCUhpRSlGgVTegDaBZHQJjtx94NZvF1fZQoaAZoCWgPQwiefHpsS8RgQJSGlFKUaBVN6ANoFkdAmPhfzreImHV9lChoBmgJaA9DCEjDKXNzkWRAlIaUUpRoFU3oA2gWR0CY+NvBrN4adX2UKGgGaAloD0MI1GLwMG2UYkCUhpRSlGgVTegDaBZHQJj5OkAPuoh1fZQoaAZoCWgPQwh5spsZ/YQ+QJSGlFKUaBVNDQFoFkdAmP4oL5RCQnV9lChoBmgJaA9DCLcos0GmU2FAlIaUUpRoFU3oA2gWR0CZAOwco6S1dX2UKGgGaAloD0MIGlOwxlmAY0CUhpRSlGgVTegDaBZHQJkB+IDYAbR1fZQoaAZoCWgPQwgj3GRUGaxhQJSGlFKUaBVN6ANoFkdAmQNFsDW9UXV9lChoBmgJaA9DCCpVouwtHWBAlIaUUpRoFU3oA2gWR0CZBOK7ZnL8dX2UKGgGaAloD0MIUFPL1vooZkCUhpRSlGgVTegDaBZHQJkFSetjkMl1fZQoaAZoCWgPQwiSlzWxwJ5lQJSGlFKUaBVN6ANoFkdAmQbPovBacXV9lChoBmgJaA9DCI81I4Ncn2JAlIaUUpRoFU3oA2gWR0CZCM3K0UoKdX2UKGgGaAloD0MI+ir52N1RYECUhpRSlGgVTegDaBZHQJkJYpd8iOh1fZQoaAZoCWgPQwgjERrBxi1KQJSGlFKUaBVLnGgWR0CZCZn5zo2XdX2UKGgGaAloD0MIC34bYrzAQ0CUhpRSlGgVS/BoFkdAmQoc4gieNHV9lChoBmgJaA9DCGkewCK/il9AlIaUUpRoFU3oA2gWR0CZC/8VYZEVdX2UKGgGaAloD0MIYRvxZLfbbUCUhpRSlGgVTTkCaBZHQJkMdzq8lHB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f12fa52e2480cb760440916831dd47c772a9a594d785559bd3d8c0433113fd2
3
+ size 147206
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b56969430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b569694c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b56969550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b569695e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4b56969670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4b56969700>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b56969790>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4b56969820>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b569698b0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b56969940>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b569699d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4b5694fd20>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672890180346216226,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMqRtD7YtBA/FAw3vo/oVL5smR8+/Q2FvQAAAAAAAAAAxs4SvgP7TT/WMxQ+DHKyvvbWJDyqLNE8AAAAAAAAAAAzZEQ9ewKkuir6irmX9XO08/oEOgLLnzgAAIA/AACAP6Zgnb0UfIW6FmmAu2w0s7aq5Hw61LqVOgAAgD8AAIA/s7FnvQXKoLtreve76omDPK7U7jza1mC9AACAPwAAgD8oBYK+IpVfP2EoyD2tp7i+hoVKvvW+Mj4AAAAAAAAAABou6b18+IE+S1TVPbm/k76WYto8EvDQvAAAAAAAAAAAQCBZPnIaqj9u0wU/oXKWvm51lD4VKbs9AAAAAAAAAAAANTw+plmtPwFGhj7gO6G+DNScPvUD/D0AAAAAAAAAAM1sv7z2BEG65PIbt6uUkzEsOT67x1Q1NgAAgD8AAIA/GuGOPbvlqz0QcOi8Pspsvgg+RT2w36C8AAAAAAAAAABmHwy99hxfun3F/Lv1G1U2CoadOvX4vrUAAIA/AACAPwDlmL2P0jS6OlPWOqKlVjVALR87zsj8uQAAgD8AAIA/zejNvT/GQD/ecS8+UXeDvqK4E7vqid09AAAAAAAAAADNTMU8q5fuPShW37xdYCa+qh0ePKqHnLwAAAAAAAAAADPZ6TxPRBA+CtjfvQ+Qjb7xPg29xamhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ3Bcxg1QckCUhpRSlIwBbJRNigGMAXSUR0CXiduvECNkdX2UKGgGaAloD0MIFLNeDGXPYECUhpRSlGgVTegDaBZHQJeMCrmyPdV1fZQoaAZoCWgPQwjek4eF2kplQJSGlFKUaBVN6ANoFkdAl6FRxPwd83V9lChoBmgJaA9DCCO8PQiBXGJAlIaUUpRoFU3oA2gWR0CXpI8MNMGpdX2UKGgGaAloD0MIXMgjuJEWZUCUhpRSlGgVTegDaBZHQJeraLLpzLh1fZQoaAZoCWgPQwgZrDjV2qtoQJSGlFKUaBVN6ANoFkdAl6wqIBRyfnV9lChoBmgJaA9DCEaVYdwNNWJAlIaUUpRoFU3oA2gWR0CXr2zxwyZbdX2UKGgGaAloD0MISriQR/ACZUCUhpRSlGgVTegDaBZHQJevthScbzd1fZQoaAZoCWgPQwiA8Qwaek5lQJSGlFKUaBVN6ANoFkdAl7GzB2wFDHV9lChoBmgJaA9DCBB5y9WP0mJAlIaUUpRoFU3oA2gWR0CXsp029+PSdX2UKGgGaAloD0MIQL0ZNV/xcECUhpRSlGgVTXwBaBZHQJfBNRHf/FR1fZQoaAZoCWgPQwg/qfbp+EFmQJSGlFKUaBVN6ANoFkdAl8GGy5Zr6HV9lChoBmgJaA9DCHRgOUIGoGJAlIaUUpRoFU3oA2gWR0CXxHW7e2uxdX2UKGgGaAloD0MIYXE48ysaaECUhpRSlGgVTegDaBZHQJfID7xd6cB1fZQoaAZoCWgPQwgcz2dAPYRhQJSGlFKUaBVN6ANoFkdAl84beZXuE3V9lChoBmgJaA9DCOxLNh5sdmBAlIaUUpRoFU3oA2gWR0CX0VFQVKwqdX2UKGgGaAloD0MIyM9GrhsqY0CUhpRSlGgVTegDaBZHQJfSYG1QZXN1fZQoaAZoCWgPQwhhGoaPiLVCQJSGlFKUaBVNBgFoFkdAl9OmS+xnnXV9lChoBmgJaA9DCNTWiGCcumRAlIaUUpRoFU3oA2gWR0CX1UZ4fOlgdX2UKGgGaAloD0MIPjxLkJF1ZECUhpRSlGgVTegDaBZHQJfXSTibUgB1fZQoaAZoCWgPQwjgEKrU7DdcQJSGlFKUaBVN6ANoFkdAl9lJ4KQaJnV9lChoBmgJaA9DCPK1Z5YEwmdAlIaUUpRoFU3oA2gWR0CX73O6unuRdX2UKGgGaAloD0MIiEZ3EDs1ZECUhpRSlGgVTegDaBZHQJf2lg9eQdV1fZQoaAZoCWgPQwiN8PYghNRiQJSGlFKUaBVN6ANoFkdAl/nncclw+HV9lChoBmgJaA9DCNY2xeOiUGVAlIaUUpRoFU3oA2gWR0CX+i6dUbT+dX2UKGgGaAloD0MIpdsSuWD9ZUCUhpRSlGgVTegDaBZHQJf8FZowmE51fZQoaAZoCWgPQwin591Y0AJnQJSGlFKUaBVN6ANoFkdAl/ze7L+xW3V9lChoBmgJaA9DCLTjht9Nl0lAlIaUUpRoFUvBaBZHQJgDwRcu8K51fZQoaAZoCWgPQwiw5CoWPwdkQJSGlFKUaBVN6ANoFkdAmAonWWhRInV9lChoBmgJaA9DCK1NY3st7mFAlIaUUpRoFU3oA2gWR0CYCm+H8CPqdX2UKGgGaAloD0MIeSRenk5JZUCUhpRSlGgVTegDaBZHQJgQafI0ZWJ1fZQoaAZoCWgPQwiYwK27efNvQJSGlFKUaBVN4AFoFkdAmBBt6HCXQnV9lChoBmgJaA9DCO5fWWlS2hRAlIaUUpRoFUvraBZHQJgQ4tOEdvN1fZQoaAZoCWgPQwhYxRuZRypAQJSGlFKUaBVLwGgWR0CYFSTPjXFtdX2UKGgGaAloD0MIPZtVnys6Y0CUhpRSlGgVTegDaBZHQJgWD+yZ8a51fZQoaAZoCWgPQwg1JsRcUtNGQJSGlFKUaBVL8WgWR0CYF3DNQj2SdX2UKGgGaAloD0MIpPyk2iduZECUhpRSlGgVTegDaBZHQJgY53HJcPh1fZQoaAZoCWgPQwgZPEz7Zg1nQJSGlFKUaBVN6ANoFkdAmBnKP4mCy3V9lChoBmgJaA9DCNEhcCRQ/WJAlIaUUpRoFU3oA2gWR0CYGutyxRl6dX2UKGgGaAloD0MIih2NQ33qY0CUhpRSlGgVTegDaBZHQJgcPoxHoX91fZQoaAZoCWgPQwhZGCKnL/5kQJSGlFKUaBVN6ANoFkdAmB4OyE+PinV9lChoBmgJaA9DCLLUer/RI2RAlIaUUpRoFU3oA2gWR0CYH8XXyy2QdX2UKGgGaAloD0MIsaayKOyMQUCUhpRSlGgVS/RoFkdAmCBCOBDohnV9lChoBmgJaA9DCClZTkJpXWZAlIaUUpRoFU3oA2gWR0CYNZbzK9wndX2UKGgGaAloD0MIo3kAi/xJYUCUhpRSlGgVTegDaBZHQJhBHU2DQJJ1fZQoaAZoCWgPQwgmi/uPTB9mQJSGlFKUaBVN6ANoFkdAmENZFkQPJHV9lChoBmgJaA9DCJyMKsO4IV9AlIaUUpRoFU3oA2gWR0CYRE84xUNsdX2UKGgGaAloD0MIcT0K16PqTECUhpRSlGgVS9NoFkdAmE+mg3974XV9lChoBmgJaA9DCAu3fCSlCWdAlIaUUpRoFU3oA2gWR0CYWgR9w3o+dX2UKGgGaAloD0MIxyk6ksvvZUCUhpRSlGgVTegDaBZHQJhaCQ+2Vml1fZQoaAZoCWgPQwhqSx3kdfZkQJSGlFKUaBVN6ANoFkdAmFqAXEZR9HV9lChoBmgJaA9DCFMI5BIH/HBAlIaUUpRoFU17AmgWR0CYWtYjSofkdX2UKGgGaAloD0MIIA2nzE2/ZECUhpRSlGgVTegDaBZHQJhfYam4y451fZQoaAZoCWgPQwhBnfLoRlJgQJSGlFKUaBVN6ANoFkdAmGDRtP557nV9lChoBmgJaA9DCBqJ0Ai2PmBAlIaUUpRoFU3oA2gWR0CYYmjaPCEYdX2UKGgGaAloD0MIMGR1q2f8YECUhpRSlGgVTegDaBZHQJhjWOZLIxR1fZQoaAZoCWgPQwj678Frl0tiQJSGlFKUaBVN6ANoFkdAmGSXXumaY3V9lChoBmgJaA9DCHTTZpyGqmZAlIaUUpRoFU3oA2gWR0CYZkMaCL/CdX2UKGgGaAloD0MIARb59UO7Y0CUhpRSlGgVTegDaBZHQJhoOWPcSGt1fZQoaAZoCWgPQwj5odKIGdxlQJSGlFKUaBVN6ANoFkdAmGpdKEnLJXV9lChoBmgJaA9DCDVB1H2ASGRAlIaUUpRoFU3oA2gWR0CYavM2m52AdX2UKGgGaAloD0MIe8A8ZMqkU0CUhpRSlGgVTSEBaBZHQJiBRRxcVxl1fZQoaAZoCWgPQwgdxw+VRspkQJSGlFKUaBVN6ANoFkdAmI2uKXOW0XV9lChoBmgJaA9DCM7BM6FJMWdAlIaUUpRoFU3oA2gWR0CYkW/wiJO4dX2UKGgGaAloD0MI63Hfap2wY0CUhpRSlGgVTegDaBZHQJiiJW+49X91fZQoaAZoCWgPQwjIfat14hZRQJSGlFKUaBVL+2gWR0CYom336AOKdX2UKGgGaAloD0MILT9wlacsZ0CUhpRSlGgVTegDaBZHQJit4h6jWTZ1fZQoaAZoCWgPQwiPNSOD3KJeQJSGlFKUaBVN6ANoFkdAmK3mce8wpXV9lChoBmgJaA9DCCU8odcfrmRAlIaUUpRoFU3oA2gWR0CYrl+SKWLQdX2UKGgGaAloD0MIxAWgUbqwZUCUhpRSlGgVTegDaBZHQJiut74SHuZ1fZQoaAZoCWgPQwi/Khcq/1ZlQJSGlFKUaBVN6ANoFkdAmLSGSU1Q7HV9lChoBmgJaA9DCLNCke5nYmdAlIaUUpRoFU3oA2gWR0CYtfkgwGnodX2UKGgGaAloD0MI0el5N5Y8ZECUhpRSlGgVTegDaBZHQJi26xKQJX11fZQoaAZoCWgPQwj3V4/71vZiQJSGlFKUaBVN6ANoFkdAmLgn/giu+3V9lChoBmgJaA9DCLb4FADj1GJAlIaUUpRoFU3oA2gWR0CYuY6asp5NdX2UKGgGaAloD0MIcO6vHve1LECUhpRSlGgVS/JoFkdAmLnqc7Qsw3V9lChoBmgJaA9DCAa+olsv92VAlIaUUpRoFU3oA2gWR0CYu1XfIjnndX2UKGgGaAloD0MIzeodbgcCZECUhpRSlGgVTegDaBZHQJi9LG4qgAZ1fZQoaAZoCWgPQwiyne+nxgBmQJSGlFKUaBVN6ANoFkdAmL2xEF4cFXV9lChoBmgJaA9DCGuduBwvNmhAlIaUUpRoFU3oA2gWR0CYwFcBEKE4dX2UKGgGaAloD0MIJ6JfW3+hckCUhpRSlGgVTaEBaBZHQJjbU5bQkX11fZQoaAZoCWgPQwjdJAaBlSRlQJSGlFKUaBVN6ANoFkdAmOEakEcKgXV9lChoBmgJaA9DCO0seqcCDWBAlIaUUpRoFU3oA2gWR0CY7ZL/CIk7dX2UKGgGaAloD0MIacai6exXXUCUhpRSlGgVTegDaBZHQJjtx94NZvF1fZQoaAZoCWgPQwiefHpsS8RgQJSGlFKUaBVN6ANoFkdAmPhfzreImHV9lChoBmgJaA9DCEjDKXNzkWRAlIaUUpRoFU3oA2gWR0CY+NvBrN4adX2UKGgGaAloD0MI1GLwMG2UYkCUhpRSlGgVTegDaBZHQJj5OkAPuoh1fZQoaAZoCWgPQwh5spsZ/YQ+QJSGlFKUaBVNDQFoFkdAmP4oL5RCQnV9lChoBmgJaA9DCLcos0GmU2FAlIaUUpRoFU3oA2gWR0CZAOwco6S1dX2UKGgGaAloD0MIGlOwxlmAY0CUhpRSlGgVTegDaBZHQJkB+IDYAbR1fZQoaAZoCWgPQwgj3GRUGaxhQJSGlFKUaBVN6ANoFkdAmQNFsDW9UXV9lChoBmgJaA9DCCpVouwtHWBAlIaUUpRoFU3oA2gWR0CZBOK7ZnL8dX2UKGgGaAloD0MIUFPL1vooZkCUhpRSlGgVTegDaBZHQJkFSetjkMl1fZQoaAZoCWgPQwiSlzWxwJ5lQJSGlFKUaBVN6ANoFkdAmQbPovBacXV9lChoBmgJaA9DCI81I4Ncn2JAlIaUUpRoFU3oA2gWR0CZCM3K0UoKdX2UKGgGaAloD0MI+ir52N1RYECUhpRSlGgVTegDaBZHQJkJYpd8iOh1fZQoaAZoCWgPQwgjERrBxi1KQJSGlFKUaBVLnGgWR0CZCZn5zo2XdX2UKGgGaAloD0MIC34bYrzAQ0CUhpRSlGgVS/BoFkdAmQoc4gieNHV9lChoBmgJaA9DCGkewCK/il9AlIaUUpRoFU3oA2gWR0CZC/8VYZEVdX2UKGgGaAloD0MIYRvxZLfbbUCUhpRSlGgVTTkCaBZHQJkMdzq8lHB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:529a19fe9cfef4de108a4d6cedf596fdcd5b017d06ad12c260b6e6ce1ab427ec
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a189469246e321bf561db49b749ecbb10ca57b23e79092e28ac7ad6becfec498
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (198 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.8898301651262, "std_reward": 14.866872505995154, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-05T04:06:26.923975"}