onebitquantized
commited on
Commit
•
dbca506
1
Parent(s):
5da7be6
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,79 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- **
|
24 |
-
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: gemma
|
4 |
+
base_model:
|
5 |
+
- google/gemma-2-9b-it
|
6 |
---
|
7 |
|
8 |
+
# This model has been xMADified!
|
9 |
+
|
10 |
+
This repository contains [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.
|
11 |
+
|
12 |
+
# Why should I use this model?
|
13 |
+
|
14 |
+
1. **Accuracy:** This xMADified model is the *best* quantized version of the [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) model (8 GB only). See _Table 1_ below for model quality benchmarks.
|
15 |
+
|
16 |
+
2. **Memory-efficiency:** The full-precision model is around 18.5 GB, while this xMADified model is only around 8 GB, making it feasible to run on a 12 GB GPU.
|
17 |
+
|
18 |
+
3. **Fine-tuning**: These models are fine-tunable over the same reduced (12 GB GPU) hardware in mere 3-clicks. Watch our product demo [here](https://www.youtube.com/watch?v=S0wX32kT90s&list=TLGGL9fvmJ-d4xsxODEwMjAyNA)
|
19 |
+
|
20 |
+
|
21 |
+
## Table 1: xMAD vs. Hugging Quants
|
22 |
+
|
23 |
+
| Model | MMLU | Arc Challenge | Arc Easy | LAMBADA Standard | LAMBADA OpenAI | PIQA | WinoGrande |
|
24 |
+
|---|---|---|---|---|---|---|---|
|
25 |
+
| [xmadai/gemma-2-9b-it-xMADai-INT4](https://huggingface.co/xmadai/gemma-2-9b-it-xMADai-INT4) (this model) | **71.17** | **62.37** | **85.61** | **70.60** | **72.15** | **81.50** | **75.06** |
|
26 |
+
| [hugging-quants/gemma-2-9b-it-AWQ-INT4](https://huggingface.co/hugging-quants/gemma-2-9b-it-AWQ-INT4) | 71.04 | 61.77 | 85.14 | 69.16 | 70.68 | 80.41 | 75.06 |
|
27 |
+
|
28 |
+
# How to Run Model
|
29 |
+
|
30 |
+
Loading the model checkpoint of this xMADified model requires around 8 GB of VRAM. Hence it can be efficiently run on a 12 GB GPU.
|
31 |
+
|
32 |
+
**Package prerequisites**:
|
33 |
+
|
34 |
+
1. Run the following *commands to install the required packages.
|
35 |
+
```bash
|
36 |
+
pip install torch==2.4.0 # Run following if you have CUDA version 11.8: pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu118
|
37 |
+
pip install transformers accelerate optimum
|
38 |
+
pip install -vvv --no-build-isolation "git+https://github.com/PanQiWei/AutoGPTQ.git@v0.7.1"
|
39 |
+
```
|
40 |
+
**Sample Inference Code**
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer
|
43 |
+
from auto_gptq import AutoGPTQForCausalLM
|
44 |
+
model_id = "xmadai/gemma-2-9b-it-xMADai-INT4"
|
45 |
+
prompt = [
|
46 |
+
{"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
|
47 |
+
{"role": "user", "content": "What's Deep Learning?"},
|
48 |
+
]
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
|
50 |
+
inputs = tokenizer.apply_chat_template(
|
51 |
+
prompt,
|
52 |
+
tokenize=True,
|
53 |
+
add_generation_prompt=True,
|
54 |
+
return_tensors="pt",
|
55 |
+
return_dict=True,
|
56 |
+
).to("cuda")
|
57 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
58 |
+
model_id,
|
59 |
+
device_map='auto',
|
60 |
+
trust_remote_code=True,
|
61 |
+
)
|
62 |
+
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=1024)
|
63 |
+
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
64 |
+
```
|
65 |
+
|
66 |
+
# Citation
|
67 |
+
|
68 |
+
If you found this model useful, please cite our research paper.
|
69 |
+
```
|
70 |
+
@article{zhang2024leanquant,
|
71 |
+
title={Leanquant: Accurate large language model quantization with loss-error-aware grid},
|
72 |
+
author={Zhang, Tianyi and Shrivastava, Anshumali},
|
73 |
+
journal={arXiv preprint arXiv:2407.10032},
|
74 |
+
year={2024}
|
75 |
+
}
|
76 |
+
```
|
77 |
+
|
78 |
+
# Contact Us
|
79 |
+
For additional xMADified models, access to fine-tuning, and general questions, please contact us at support@xmad.ai and join our waiting list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|