update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: ast-finetuned-audioset-10-10-0.4593_ft_env_0-12
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# ast-finetuned-audioset-10-10-0.4593_ft_env_0-12
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3804
|
23 |
+
- Accuracy: 0.9643
|
24 |
+
- Precision: 0.9702
|
25 |
+
- Recall: 0.9643
|
26 |
+
- F1: 0.9643
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1.5e-06
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 8
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 56
|
54 |
+
- num_epochs: 15
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
60 |
+
| 2.0371 | 1.0 | 28 | 1.9267 | 0.1429 | 0.3214 | 0.1429 | 0.1482 |
|
61 |
+
| 1.7315 | 2.0 | 56 | 1.5823 | 0.3214 | 0.3667 | 0.3214 | 0.2973 |
|
62 |
+
| 1.3081 | 3.0 | 84 | 1.2250 | 0.75 | 0.8423 | 0.75 | 0.7499 |
|
63 |
+
| 0.9664 | 4.0 | 112 | 0.9526 | 0.8214 | 0.8616 | 0.8214 | 0.8078 |
|
64 |
+
| 0.6607 | 5.0 | 140 | 0.7525 | 0.8571 | 0.8795 | 0.8571 | 0.8520 |
|
65 |
+
| 0.5239 | 6.0 | 168 | 0.6080 | 0.8929 | 0.9152 | 0.8929 | 0.8866 |
|
66 |
+
| 0.453 | 7.0 | 196 | 0.5089 | 0.9286 | 0.9286 | 0.9286 | 0.9286 |
|
67 |
+
| 0.323 | 8.0 | 224 | 0.4353 | 0.9286 | 0.9286 | 0.9286 | 0.9286 |
|
68 |
+
| 0.296 | 9.0 | 252 | 0.3804 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
|
69 |
+
| 0.2167 | 10.0 | 280 | 0.3382 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
|
70 |
+
| 0.186 | 11.0 | 308 | 0.3157 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
|
71 |
+
| 0.1748 | 12.0 | 336 | 0.2931 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
|
72 |
+
| 0.1367 | 13.0 | 364 | 0.2781 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
|
73 |
+
| 0.1469 | 14.0 | 392 | 0.2705 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
|
74 |
+
| 0.1308 | 15.0 | 420 | 0.2679 | 0.9643 | 0.9702 | 0.9643 | 0.9643 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.27.4
|
80 |
+
- Pytorch 2.0.0
|
81 |
+
- Datasets 2.10.1
|
82 |
+
- Tokenizers 0.11.0
|