--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ast-finetuned-audioset-10-10-0.4593_ft_env_0-12 results: [] --- # ast-finetuned-audioset-10-10-0.4593_ft_env_0-12 This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3804 - Accuracy: 0.9643 - Precision: 0.9702 - Recall: 0.9643 - F1: 0.9643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 56 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.0371 | 1.0 | 28 | 1.9267 | 0.1429 | 0.3214 | 0.1429 | 0.1482 | | 1.7315 | 2.0 | 56 | 1.5823 | 0.3214 | 0.3667 | 0.3214 | 0.2973 | | 1.3081 | 3.0 | 84 | 1.2250 | 0.75 | 0.8423 | 0.75 | 0.7499 | | 0.9664 | 4.0 | 112 | 0.9526 | 0.8214 | 0.8616 | 0.8214 | 0.8078 | | 0.6607 | 5.0 | 140 | 0.7525 | 0.8571 | 0.8795 | 0.8571 | 0.8520 | | 0.5239 | 6.0 | 168 | 0.6080 | 0.8929 | 0.9152 | 0.8929 | 0.8866 | | 0.453 | 7.0 | 196 | 0.5089 | 0.9286 | 0.9286 | 0.9286 | 0.9286 | | 0.323 | 8.0 | 224 | 0.4353 | 0.9286 | 0.9286 | 0.9286 | 0.9286 | | 0.296 | 9.0 | 252 | 0.3804 | 0.9643 | 0.9702 | 0.9643 | 0.9643 | | 0.2167 | 10.0 | 280 | 0.3382 | 0.9643 | 0.9702 | 0.9643 | 0.9643 | | 0.186 | 11.0 | 308 | 0.3157 | 0.9643 | 0.9702 | 0.9643 | 0.9643 | | 0.1748 | 12.0 | 336 | 0.2931 | 0.9643 | 0.9702 | 0.9643 | 0.9643 | | 0.1367 | 13.0 | 364 | 0.2781 | 0.9643 | 0.9702 | 0.9643 | 0.9643 | | 0.1469 | 14.0 | 392 | 0.2705 | 0.9643 | 0.9702 | 0.9643 | 0.9643 | | 0.1308 | 15.0 | 420 | 0.2679 | 0.9643 | 0.9702 | 0.9643 | 0.9643 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.11.0