xrverse commited on
Commit
2726126
·
1 Parent(s): b1733f6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -19,7 +19,7 @@ model-index:
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
- value: 0.9483870967741935
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,8 +29,8 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
31
  It achieves the following results on the evaluation set:
32
- - Loss: 0.2675
33
- - Accuracy: 0.9484
34
 
35
  ## Model description
36
 
@@ -61,16 +61,16 @@ The following hyperparameters were used during training:
61
 
62
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
63
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
64
- | 2.2332 | 1.0 | 318 | 1.5779 | 0.7303 |
65
- | 1.2209 | 2.0 | 636 | 0.7940 | 0.8603 |
66
- | 0.6485 | 3.0 | 954 | 0.4679 | 0.9135 |
67
- | 0.3987 | 4.0 | 1272 | 0.3480 | 0.9326 |
68
- | 0.2964 | 5.0 | 1590 | 0.3043 | 0.9442 |
69
- | 0.2522 | 6.0 | 1908 | 0.2863 | 0.9461 |
70
- | 0.2304 | 7.0 | 2226 | 0.2762 | 0.9468 |
71
- | 0.2193 | 8.0 | 2544 | 0.2708 | 0.9468 |
72
- | 0.2129 | 9.0 | 2862 | 0.2689 | 0.9477 |
73
- | 0.2097 | 10.0 | 3180 | 0.2675 | 0.9484 |
74
 
75
 
76
  ### Framework versions
 
19
  metrics:
20
  - name: Accuracy
21
  type: accuracy
22
+ value: 0.9303225806451613
23
  ---
24
 
25
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
31
  It achieves the following results on the evaluation set:
32
+ - Loss: 0.0332
33
+ - Accuracy: 0.9303
34
 
35
  ## Model description
36
 
 
61
 
62
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
63
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
64
+ | 0.4409 | 1.0 | 318 | 0.2288 | 0.6206 |
65
+ | 0.1898 | 2.0 | 636 | 0.1106 | 0.8461 |
66
+ | 0.116 | 3.0 | 954 | 0.0729 | 0.8994 |
67
+ | 0.0861 | 4.0 | 1272 | 0.0548 | 0.9097 |
68
+ | 0.0707 | 5.0 | 1590 | 0.0454 | 0.9184 |
69
+ | 0.0613 | 6.0 | 1908 | 0.0399 | 0.9239 |
70
+ | 0.0557 | 7.0 | 2226 | 0.0371 | 0.9294 |
71
+ | 0.0522 | 8.0 | 2544 | 0.0348 | 0.93 |
72
+ | 0.05 | 9.0 | 2862 | 0.0336 | 0.9297 |
73
+ | 0.0487 | 10.0 | 3180 | 0.0332 | 0.9303 |
74
 
75
 
76
  ### Framework versions