--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9419354838709677 --- # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1662 - Accuracy: 0.9419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4626 | 1.0 | 318 | 0.9384 | 0.7232 | | 0.7233 | 2.0 | 636 | 0.4417 | 0.8648 | | 0.375 | 3.0 | 954 | 0.2598 | 0.9181 | | 0.2407 | 4.0 | 1272 | 0.2047 | 0.9323 | | 0.1932 | 5.0 | 1590 | 0.1859 | 0.9394 | | 0.1732 | 6.0 | 1908 | 0.1769 | 0.9377 | | 0.162 | 7.0 | 2226 | 0.1718 | 0.9410 | | 0.156 | 8.0 | 2544 | 0.1684 | 0.9410 | | 0.1523 | 9.0 | 2862 | 0.1669 | 0.9416 | | 0.1502 | 10.0 | 3180 | 0.1662 | 0.9419 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.10.3