End of training
Browse files- README.md +91 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/bart-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: bart-base-lora
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# bart-base-lora
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6647
|
23 |
+
- Accuracy: 0.7901
|
24 |
+
- Precision: 0.7852
|
25 |
+
- Recall: 0.7901
|
26 |
+
- Precision Macro: 0.6664
|
27 |
+
- Recall Macro: 0.6485
|
28 |
+
- Macro Fpr: 0.0194
|
29 |
+
- Weighted Fpr: 0.0186
|
30 |
+
- Weighted Specificity: 0.9735
|
31 |
+
- Macro Specificity: 0.9842
|
32 |
+
- Weighted Sensitivity: 0.7901
|
33 |
+
- Macro Sensitivity: 0.6485
|
34 |
+
- F1 Micro: 0.7901
|
35 |
+
- F1 Macro: 0.6250
|
36 |
+
- F1 Weighted: 0.7804
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 32
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 15
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
|
69 |
+
| No log | 1.0 | 160 | 1.3205 | 0.6112 | 0.5322 | 0.6112 | 0.2887 | 0.3024 | 0.0464 | 0.0435 | 0.9266 | 0.9692 | 0.6112 | 0.3024 | 0.6112 | 0.2871 | 0.5575 |
|
70 |
+
| No log | 2.0 | 321 | 0.8875 | 0.6995 | 0.6728 | 0.6995 | 0.3822 | 0.4254 | 0.0306 | 0.0298 | 0.9609 | 0.9774 | 0.6995 | 0.4254 | 0.6995 | 0.3948 | 0.6808 |
|
71 |
+
| No log | 3.0 | 482 | 0.8427 | 0.7064 | 0.6952 | 0.7064 | 0.4131 | 0.4442 | 0.0295 | 0.0288 | 0.9641 | 0.9780 | 0.7064 | 0.4442 | 0.7064 | 0.3969 | 0.6752 |
|
72 |
+
| 1.2895 | 4.0 | 643 | 0.7719 | 0.7273 | 0.7132 | 0.7273 | 0.4198 | 0.4598 | 0.0264 | 0.0261 | 0.9690 | 0.9798 | 0.7273 | 0.4598 | 0.7273 | 0.4284 | 0.7167 |
|
73 |
+
| 1.2895 | 5.0 | 803 | 0.7388 | 0.7506 | 0.7400 | 0.7506 | 0.5733 | 0.5165 | 0.0239 | 0.0232 | 0.9697 | 0.9814 | 0.7506 | 0.5165 | 0.7506 | 0.5072 | 0.7368 |
|
74 |
+
| 1.2895 | 6.0 | 964 | 0.7526 | 0.7444 | 0.7337 | 0.7444 | 0.5703 | 0.5230 | 0.0247 | 0.0239 | 0.9691 | 0.9809 | 0.7444 | 0.5230 | 0.7444 | 0.5088 | 0.7268 |
|
75 |
+
| 0.7332 | 7.0 | 1125 | 0.7082 | 0.7552 | 0.7436 | 0.7552 | 0.5665 | 0.5728 | 0.0233 | 0.0226 | 0.9712 | 0.9818 | 0.7552 | 0.5728 | 0.7552 | 0.5609 | 0.7461 |
|
76 |
+
| 0.7332 | 8.0 | 1286 | 0.7161 | 0.7583 | 0.7489 | 0.7583 | 0.5641 | 0.5975 | 0.0228 | 0.0223 | 0.9721 | 0.9820 | 0.7583 | 0.5975 | 0.7583 | 0.5756 | 0.7503 |
|
77 |
+
| 0.7332 | 9.0 | 1446 | 0.6831 | 0.7777 | 0.7587 | 0.7777 | 0.5781 | 0.6069 | 0.0208 | 0.0200 | 0.9715 | 0.9833 | 0.7777 | 0.6069 | 0.7777 | 0.5875 | 0.7653 |
|
78 |
+
| 0.6167 | 10.0 | 1607 | 0.6683 | 0.7862 | 0.7714 | 0.7862 | 0.5917 | 0.6174 | 0.0198 | 0.0191 | 0.9728 | 0.9839 | 0.7862 | 0.6174 | 0.7862 | 0.5987 | 0.7754 |
|
79 |
+
| 0.6167 | 11.0 | 1768 | 0.6885 | 0.7761 | 0.7628 | 0.7761 | 0.5817 | 0.6220 | 0.0210 | 0.0202 | 0.9723 | 0.9832 | 0.7761 | 0.6220 | 0.7761 | 0.5946 | 0.7642 |
|
80 |
+
| 0.6167 | 12.0 | 1929 | 0.6830 | 0.7870 | 0.7826 | 0.7870 | 0.6627 | 0.6464 | 0.0197 | 0.0190 | 0.9734 | 0.9840 | 0.7870 | 0.6464 | 0.7870 | 0.6214 | 0.7764 |
|
81 |
+
| 0.5314 | 13.0 | 2089 | 0.6605 | 0.7916 | 0.7770 | 0.7916 | 0.5965 | 0.6358 | 0.0192 | 0.0185 | 0.9741 | 0.9844 | 0.7916 | 0.6358 | 0.7916 | 0.6111 | 0.7818 |
|
82 |
+
| 0.5314 | 14.0 | 2250 | 0.6614 | 0.7909 | 0.7794 | 0.7909 | 0.6368 | 0.6478 | 0.0193 | 0.0185 | 0.9729 | 0.9842 | 0.7909 | 0.6478 | 0.7909 | 0.6261 | 0.7803 |
|
83 |
+
| 0.5314 | 14.93 | 2400 | 0.6647 | 0.7901 | 0.7852 | 0.7901 | 0.6664 | 0.6485 | 0.0194 | 0.0186 | 0.9735 | 0.9842 | 0.7901 | 0.6485 | 0.7901 | 0.6250 | 0.7804 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.35.2
|
89 |
+
- Pytorch 2.1.0+cu121
|
90 |
+
- Datasets 2.18.0
|
91 |
+
- Tokenizers 0.15.1
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 13151448
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2156c22df6454648fd71b35e07a6ef7863527e78c366bb4894646200a6fc4ea3
|
3 |
size 13151448
|