xshubhamx commited on
Commit
cdc5e9b
·
verified ·
1 Parent(s): 5536aaf

Upload folder using huggingface_hub

Browse files
training_checkpoints/checkpoint-2089/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: facebook/bart-base
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.10.0
training_checkpoints/checkpoint-2089/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "facebook/bart-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 64,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "v_proj",
25
+ "fc1",
26
+ "fc2",
27
+ "out_proj",
28
+ "q_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "SEQ_CLS",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
training_checkpoints/checkpoint-2089/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53698643061550fc742fdb13ff67b657c9946327bc2b4da17961af6c028a767f
3
+ size 13151448
training_checkpoints/checkpoint-2089/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
training_checkpoints/checkpoint-2089/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:251dbc8cb62339c1f723e74e0f5e0becd1086d4a7cfae640f75afdb366277d1b
3
+ size 26413626
training_checkpoints/checkpoint-2089/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e12f3743cf357c4072324e6f4b65d36cfd8dd3a720e45bb23ed8ba88963fd067
3
+ size 14244
training_checkpoints/checkpoint-2089/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17d312c85e7710a02853d89e1740c738c65d9cbdf79808c54c9a567b89b1df7d
3
+ size 1064
training_checkpoints/checkpoint-2089/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
training_checkpoints/checkpoint-2089/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
training_checkpoints/checkpoint-2089/tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 1024,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "BartTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
training_checkpoints/checkpoint-2089/trainer_state.json ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6214234200731922,
3
+ "best_model_checkpoint": "bart-base-lora/checkpoint-1929",
4
+ "epoch": 12.995334370139968,
5
+ "eval_steps": 500,
6
+ "global_step": 2089,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.611154144074361,
14
+ "eval_f1_macro": 0.28705545756004525,
15
+ "eval_f1_micro": 0.611154144074361,
16
+ "eval_f1_weighted": 0.5574695078229231,
17
+ "eval_loss": 1.3204560279846191,
18
+ "eval_macro_fpr": 0.046390243375546196,
19
+ "eval_macro_sensitivity": 0.302378554842108,
20
+ "eval_macro_specificity": 0.9691815961629444,
21
+ "eval_precision": 0.5321554731456403,
22
+ "eval_precision_macro": 0.2887439395071009,
23
+ "eval_recall": 0.611154144074361,
24
+ "eval_recall_macro": 0.302378554842108,
25
+ "eval_runtime": 45.1674,
26
+ "eval_samples_per_second": 28.583,
27
+ "eval_steps_per_second": 3.587,
28
+ "eval_weighted_fpr": 0.04347073086248701,
29
+ "eval_weighted_sensitivity": 0.611154144074361,
30
+ "eval_weighted_specificity": 0.9265697983698051,
31
+ "step": 160
32
+ },
33
+ {
34
+ "epoch": 2.0,
35
+ "eval_accuracy": 0.6994577846630519,
36
+ "eval_f1_macro": 0.3947617401663212,
37
+ "eval_f1_micro": 0.6994577846630519,
38
+ "eval_f1_weighted": 0.6807748226338182,
39
+ "eval_loss": 0.887535810470581,
40
+ "eval_macro_fpr": 0.03062685085400977,
41
+ "eval_macro_sensitivity": 0.4253981018601158,
42
+ "eval_macro_specificity": 0.977359054380045,
43
+ "eval_precision": 0.6728416067370143,
44
+ "eval_precision_macro": 0.3822291983692299,
45
+ "eval_recall": 0.6994577846630519,
46
+ "eval_recall_macro": 0.4253981018601158,
47
+ "eval_runtime": 44.0045,
48
+ "eval_samples_per_second": 29.338,
49
+ "eval_steps_per_second": 3.681,
50
+ "eval_weighted_fpr": 0.02977743668457406,
51
+ "eval_weighted_sensitivity": 0.6994577846630519,
52
+ "eval_weighted_specificity": 0.9609280310376243,
53
+ "step": 321
54
+ },
55
+ {
56
+ "epoch": 3.0,
57
+ "eval_accuracy": 0.7064291247095275,
58
+ "eval_f1_macro": 0.39687975393644837,
59
+ "eval_f1_micro": 0.7064291247095275,
60
+ "eval_f1_weighted": 0.6751887743731854,
61
+ "eval_loss": 0.842707633972168,
62
+ "eval_macro_fpr": 0.029525759570689643,
63
+ "eval_macro_sensitivity": 0.44418263304043937,
64
+ "eval_macro_specificity": 0.9780349023882488,
65
+ "eval_precision": 0.6951917464608133,
66
+ "eval_precision_macro": 0.4131313886422618,
67
+ "eval_recall": 0.7064291247095275,
68
+ "eval_recall_macro": 0.44418263304043937,
69
+ "eval_runtime": 44.2756,
70
+ "eval_samples_per_second": 29.158,
71
+ "eval_steps_per_second": 3.659,
72
+ "eval_weighted_fpr": 0.02882786947592607,
73
+ "eval_weighted_sensitivity": 0.7064291247095275,
74
+ "eval_weighted_specificity": 0.9640944111142056,
75
+ "step": 482
76
+ },
77
+ {
78
+ "epoch": 3.11,
79
+ "learning_rate": 3.958333333333333e-05,
80
+ "loss": 1.2895,
81
+ "step": 500
82
+ },
83
+ {
84
+ "epoch": 4.0,
85
+ "eval_accuracy": 0.7273431448489543,
86
+ "eval_f1_macro": 0.42839565617146974,
87
+ "eval_f1_micro": 0.7273431448489543,
88
+ "eval_f1_weighted": 0.7166656051521775,
89
+ "eval_loss": 0.7718679904937744,
90
+ "eval_macro_fpr": 0.026373610346420835,
91
+ "eval_macro_sensitivity": 0.4597947061276887,
92
+ "eval_macro_specificity": 0.9797578098165848,
93
+ "eval_precision": 0.7132141916978711,
94
+ "eval_precision_macro": 0.41981312370683244,
95
+ "eval_recall": 0.7273431448489543,
96
+ "eval_recall_macro": 0.4597947061276887,
97
+ "eval_runtime": 44.0471,
98
+ "eval_samples_per_second": 29.31,
99
+ "eval_steps_per_second": 3.678,
100
+ "eval_weighted_fpr": 0.026077937472218107,
101
+ "eval_weighted_sensitivity": 0.7273431448489543,
102
+ "eval_weighted_specificity": 0.9690240023998159,
103
+ "step": 643
104
+ },
105
+ {
106
+ "epoch": 5.0,
107
+ "eval_accuracy": 0.750580945003873,
108
+ "eval_f1_macro": 0.5071625387211971,
109
+ "eval_f1_micro": 0.750580945003873,
110
+ "eval_f1_weighted": 0.7368350875727435,
111
+ "eval_loss": 0.7387559413909912,
112
+ "eval_macro_fpr": 0.02390193870216418,
113
+ "eval_macro_sensitivity": 0.5165232292614671,
114
+ "eval_macro_specificity": 0.9813510652812688,
115
+ "eval_precision": 0.739991301984922,
116
+ "eval_precision_macro": 0.5733174750951799,
117
+ "eval_recall": 0.750580945003873,
118
+ "eval_recall_macro": 0.5165232292614671,
119
+ "eval_runtime": 43.5191,
120
+ "eval_samples_per_second": 29.665,
121
+ "eval_steps_per_second": 3.723,
122
+ "eval_weighted_fpr": 0.023185483870967742,
123
+ "eval_weighted_sensitivity": 0.750580945003873,
124
+ "eval_weighted_specificity": 0.9696850342151593,
125
+ "step": 803
126
+ },
127
+ {
128
+ "epoch": 6.0,
129
+ "eval_accuracy": 0.7443841982958946,
130
+ "eval_f1_macro": 0.508766573370445,
131
+ "eval_f1_micro": 0.7443841982958946,
132
+ "eval_f1_weighted": 0.726841801268282,
133
+ "eval_loss": 0.7526118755340576,
134
+ "eval_macro_fpr": 0.024741953499129225,
135
+ "eval_macro_sensitivity": 0.5229557335240369,
136
+ "eval_macro_specificity": 0.980899976318631,
137
+ "eval_precision": 0.7337183019873953,
138
+ "eval_precision_macro": 0.5703412270657953,
139
+ "eval_recall": 0.7443841982958946,
140
+ "eval_recall_macro": 0.5229557335240369,
141
+ "eval_runtime": 43.7116,
142
+ "eval_samples_per_second": 29.534,
143
+ "eval_steps_per_second": 3.706,
144
+ "eval_weighted_fpr": 0.023940800928612886,
145
+ "eval_weighted_sensitivity": 0.7443841982958946,
146
+ "eval_weighted_specificity": 0.9691154464835722,
147
+ "step": 964
148
+ },
149
+ {
150
+ "epoch": 6.22,
151
+ "learning_rate": 2.916666666666667e-05,
152
+ "loss": 0.7332,
153
+ "step": 1000
154
+ },
155
+ {
156
+ "epoch": 7.0,
157
+ "eval_accuracy": 0.7552285050348567,
158
+ "eval_f1_macro": 0.5608894910772386,
159
+ "eval_f1_micro": 0.7552285050348567,
160
+ "eval_f1_weighted": 0.7460771491633669,
161
+ "eval_loss": 0.7082085609436035,
162
+ "eval_macro_fpr": 0.02329269548734161,
163
+ "eval_macro_sensitivity": 0.5727565701904757,
164
+ "eval_macro_specificity": 0.9817624646436656,
165
+ "eval_precision": 0.7436383222975608,
166
+ "eval_precision_macro": 0.5665418243254761,
167
+ "eval_recall": 0.7552285050348567,
168
+ "eval_recall_macro": 0.5727565701904757,
169
+ "eval_runtime": 43.8592,
170
+ "eval_samples_per_second": 29.435,
171
+ "eval_steps_per_second": 3.694,
172
+ "eval_weighted_fpr": 0.02262637834741515,
173
+ "eval_weighted_sensitivity": 0.7552285050348567,
174
+ "eval_weighted_specificity": 0.9712084646201266,
175
+ "step": 1125
176
+ },
177
+ {
178
+ "epoch": 8.0,
179
+ "eval_accuracy": 0.7583268783888458,
180
+ "eval_f1_macro": 0.5755845408528306,
181
+ "eval_f1_micro": 0.7583268783888458,
182
+ "eval_f1_weighted": 0.7502605827076951,
183
+ "eval_loss": 0.7160602807998657,
184
+ "eval_macro_fpr": 0.022834923601538912,
185
+ "eval_macro_sensitivity": 0.5974764193374731,
186
+ "eval_macro_specificity": 0.9820281006961107,
187
+ "eval_precision": 0.7489019370925815,
188
+ "eval_precision_macro": 0.5641453776326693,
189
+ "eval_recall": 0.7583268783888458,
190
+ "eval_recall_macro": 0.5974764193374731,
191
+ "eval_runtime": 47.4544,
192
+ "eval_samples_per_second": 27.205,
193
+ "eval_steps_per_second": 3.414,
194
+ "eval_weighted_fpr": 0.022257098016835498,
195
+ "eval_weighted_sensitivity": 0.7583268783888458,
196
+ "eval_weighted_specificity": 0.9720946320528147,
197
+ "step": 1286
198
+ },
199
+ {
200
+ "epoch": 9.0,
201
+ "eval_accuracy": 0.7776917118512781,
202
+ "eval_f1_macro": 0.5874833340927881,
203
+ "eval_f1_micro": 0.7776917118512781,
204
+ "eval_f1_weighted": 0.7653015782806978,
205
+ "eval_loss": 0.683149516582489,
206
+ "eval_macro_fpr": 0.020831516213897273,
207
+ "eval_macro_sensitivity": 0.606896137249408,
208
+ "eval_macro_specificity": 0.9832816294136357,
209
+ "eval_precision": 0.7586915140412427,
210
+ "eval_precision_macro": 0.5780981033617572,
211
+ "eval_recall": 0.7776917118512781,
212
+ "eval_recall_macro": 0.606896137249408,
213
+ "eval_runtime": 50.31,
214
+ "eval_samples_per_second": 25.661,
215
+ "eval_steps_per_second": 3.22,
216
+ "eval_weighted_fpr": 0.02000976085895559,
217
+ "eval_weighted_sensitivity": 0.7776917118512781,
218
+ "eval_weighted_specificity": 0.9715327293532582,
219
+ "step": 1446
220
+ },
221
+ {
222
+ "epoch": 9.33,
223
+ "learning_rate": 1.8750000000000002e-05,
224
+ "loss": 0.6167,
225
+ "step": 1500
226
+ },
227
+ {
228
+ "epoch": 10.0,
229
+ "eval_accuracy": 0.7862122385747483,
230
+ "eval_f1_macro": 0.5987413950993845,
231
+ "eval_f1_micro": 0.7862122385747482,
232
+ "eval_f1_weighted": 0.7753590541094936,
233
+ "eval_loss": 0.6683156490325928,
234
+ "eval_macro_fpr": 0.019819293314469463,
235
+ "eval_macro_sensitivity": 0.617364154098103,
236
+ "eval_macro_specificity": 0.9839313497952282,
237
+ "eval_precision": 0.7714272913975577,
238
+ "eval_precision_macro": 0.5916700769971839,
239
+ "eval_recall": 0.7862122385747483,
240
+ "eval_recall_macro": 0.617364154098103,
241
+ "eval_runtime": 46.3094,
242
+ "eval_samples_per_second": 27.878,
243
+ "eval_steps_per_second": 3.498,
244
+ "eval_weighted_fpr": 0.019052878641446915,
245
+ "eval_weighted_sensitivity": 0.7862122385747483,
246
+ "eval_weighted_specificity": 0.972758008353676,
247
+ "step": 1607
248
+ },
249
+ {
250
+ "epoch": 11.0,
251
+ "eval_accuracy": 0.7761425251742835,
252
+ "eval_f1_macro": 0.5945805235654043,
253
+ "eval_f1_micro": 0.7761425251742835,
254
+ "eval_f1_weighted": 0.7642426809512617,
255
+ "eval_loss": 0.6884666085243225,
256
+ "eval_macro_fpr": 0.020959556505082782,
257
+ "eval_macro_sensitivity": 0.6219516621776988,
258
+ "eval_macro_specificity": 0.9832325403042509,
259
+ "eval_precision": 0.762752032263232,
260
+ "eval_precision_macro": 0.581742682634886,
261
+ "eval_recall": 0.7761425251742835,
262
+ "eval_recall_macro": 0.6219516621776988,
263
+ "eval_runtime": 44.4944,
264
+ "eval_samples_per_second": 29.015,
265
+ "eval_steps_per_second": 3.641,
266
+ "eval_weighted_fpr": 0.02018579311308235,
267
+ "eval_weighted_sensitivity": 0.7761425251742835,
268
+ "eval_weighted_specificity": 0.9723455793894815,
269
+ "step": 1768
270
+ },
271
+ {
272
+ "epoch": 12.0,
273
+ "eval_accuracy": 0.7869868319132456,
274
+ "eval_f1_macro": 0.6214234200731922,
275
+ "eval_f1_micro": 0.7869868319132455,
276
+ "eval_f1_weighted": 0.7764436224395941,
277
+ "eval_loss": 0.6829659938812256,
278
+ "eval_macro_fpr": 0.01971781574074696,
279
+ "eval_macro_sensitivity": 0.6463770170214457,
280
+ "eval_macro_specificity": 0.9840270123264785,
281
+ "eval_precision": 0.7826408792667282,
282
+ "eval_precision_macro": 0.6626773170335125,
283
+ "eval_recall": 0.7869868319132456,
284
+ "eval_recall_macro": 0.6463770170214457,
285
+ "eval_runtime": 43.9944,
286
+ "eval_samples_per_second": 29.345,
287
+ "eval_steps_per_second": 3.682,
288
+ "eval_weighted_fpr": 0.018966825298296436,
289
+ "eval_weighted_sensitivity": 0.7869868319132456,
290
+ "eval_weighted_specificity": 0.9734183529839338,
291
+ "step": 1929
292
+ },
293
+ {
294
+ "epoch": 12.44,
295
+ "learning_rate": 8.333333333333334e-06,
296
+ "loss": 0.5314,
297
+ "step": 2000
298
+ },
299
+ {
300
+ "epoch": 13.0,
301
+ "eval_accuracy": 0.7916343919442292,
302
+ "eval_f1_macro": 0.6110606025775643,
303
+ "eval_f1_micro": 0.7916343919442292,
304
+ "eval_f1_weighted": 0.7817623460591858,
305
+ "eval_loss": 0.660524845123291,
306
+ "eval_macro_fpr": 0.01915789146680066,
307
+ "eval_macro_sensitivity": 0.6358134270226833,
308
+ "eval_macro_specificity": 0.984380207900859,
309
+ "eval_precision": 0.7769679723590022,
310
+ "eval_precision_macro": 0.5964718375735727,
311
+ "eval_recall": 0.7916343919442292,
312
+ "eval_recall_macro": 0.6358134270226833,
313
+ "eval_runtime": 44.1283,
314
+ "eval_samples_per_second": 29.256,
315
+ "eval_steps_per_second": 3.671,
316
+ "eval_weighted_fpr": 0.01845372847636688,
317
+ "eval_weighted_sensitivity": 0.7916343919442292,
318
+ "eval_weighted_specificity": 0.9740687265686558,
319
+ "step": 2089
320
+ }
321
+ ],
322
+ "logging_steps": 500,
323
+ "max_steps": 2400,
324
+ "num_train_epochs": 15,
325
+ "save_steps": 500,
326
+ "total_flos": 2.1160179766462464e+16,
327
+ "trial_name": null,
328
+ "trial_params": null
329
+ }
training_checkpoints/checkpoint-2089/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfb230625284b71a8582d0495ae9a462b745f8cb976f9d7932c4f91357944609
3
+ size 4600
training_checkpoints/checkpoint-2089/vocab.json ADDED
The diff for this file is too large to render. See raw diff