|
|
|
import torch |
|
from bitsandbytes.optim import PagedAdamW32bit |
|
from mmengine.dataset import DefaultSampler |
|
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, |
|
LoggerHook, ParamSchedulerHook) |
|
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR |
|
from modelscope.msdatasets import MsDataset |
|
from peft import LoraConfig |
|
from transformers import (AutoModelForCausalLM, AutoTokenizer, |
|
BitsAndBytesConfig) |
|
|
|
from xtuner.dataset import process_ms_dataset |
|
from xtuner.dataset.collate_fns import default_collate_fn |
|
from xtuner.dataset.map_fns import (msagent_react_map_fn, |
|
template_map_fn_factory) |
|
from xtuner.engine import DatasetInfoHook, EvaluateChatHook |
|
from xtuner.model import SupervisedFinetune |
|
from xtuner.utils import PROMPT_TEMPLATE |
|
|
|
|
|
|
|
|
|
|
|
pretrained_model_name_or_path = 'internlm/internlm-20b' |
|
|
|
|
|
data_path = 'damo/MSAgent-Bench' |
|
prompt_template = PROMPT_TEMPLATE.default |
|
max_length = 2048 |
|
pack_to_max_length = False |
|
|
|
|
|
batch_size = 8 |
|
accumulative_counts = 1 |
|
dataloader_num_workers = 2 |
|
max_epochs = 3 |
|
optim_type = PagedAdamW32bit |
|
lr = 2e-4 |
|
betas = (0.9, 0.999) |
|
weight_decay = 0 |
|
max_norm = 1 |
|
|
|
|
|
evaluation_freq = 500 |
|
SYSTEM = ( |
|
'你是一个可以调用外部工具的助手,可以使用的工具包括:\n' |
|
"{{\'GoogleSearch\': \'一个可以从谷歌搜索结果的API。\\n" |
|
'当你需要对于一个特定问题找到简短明了的回答时,可以使用它。\\n' |
|
"输入应该是一个搜索查询。\\n\\n\'," |
|
"\'PythonInterpreter\': \"用来执行Python代码。代码必须是一个函数,\\n" |
|
"函数名必须得是 \'solution\',代码对应你的思考过程。代码实例格式如下:\\n" |
|
'```python\\n# import 依赖包\\nimport xxx\\ndef solution():' |
|
'\\n # 初始化一些变量\\n variable_names_with_real_meaning = xxx' |
|
'\\n # 步骤一\\n mid_variable = func(variable_names_with_real_meaning)' |
|
'\\n # 步骤 x\\n mid_variable = func(mid_variable)\\n # 最后结果' |
|
'\\n final_answer = func(mid_variable)\\n return final_answer' |
|
"\\n```\\n\"}}\n" |
|
'如果使用工具请遵循以下格式回复:\n```\n' |
|
'Thought:思考你当前步骤需要解决什么问题,是否需要使用工具\n' |
|
"Action:工具名称,你的工具必须从 [[\'GoogleSearch\', \'PythonInterpreter\']] 选择" |
|
'\nAction Input:工具输入参数\n```\n工具返回按照以下格式回复:\n' |
|
'```\nResponse:调用工具后的结果\n```' |
|
'\n如果你已经知道了答案,或者你不需要工具,请遵循以下格式回复\n```' |
|
'\nThought:给出最终答案的思考过程\nFinal Answer:最终答案\n```\n开始!\n') |
|
evaluation_inputs = ['上海明天天气怎么样?'] |
|
|
|
|
|
|
|
|
|
tokenizer = dict( |
|
type=AutoTokenizer.from_pretrained, |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
trust_remote_code=True, |
|
padding_side='right') |
|
|
|
model = dict( |
|
type=SupervisedFinetune, |
|
llm=dict( |
|
type=AutoModelForCausalLM.from_pretrained, |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
trust_remote_code=True, |
|
torch_dtype=torch.float16, |
|
quantization_config=dict( |
|
type=BitsAndBytesConfig, |
|
load_in_4bit=True, |
|
load_in_8bit=False, |
|
llm_int8_threshold=6.0, |
|
llm_int8_has_fp16_weight=False, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4')), |
|
lora=dict( |
|
type=LoraConfig, |
|
r=64, |
|
lora_alpha=16, |
|
lora_dropout=0.1, |
|
bias='none', |
|
task_type='CAUSAL_LM')) |
|
|
|
|
|
|
|
|
|
train_dataset = dict( |
|
type=process_ms_dataset, |
|
dataset=dict(type=MsDataset.load, dataset_name=data_path), |
|
tokenizer=tokenizer, |
|
max_length=max_length, |
|
dataset_map_fn=msagent_react_map_fn, |
|
template_map_fn=dict( |
|
type=template_map_fn_factory, template=prompt_template), |
|
remove_unused_columns=True, |
|
shuffle_before_pack=True, |
|
pack_to_max_length=pack_to_max_length) |
|
|
|
train_dataloader = dict( |
|
batch_size=batch_size, |
|
num_workers=dataloader_num_workers, |
|
dataset=train_dataset, |
|
sampler=dict(type=DefaultSampler, shuffle=True), |
|
collate_fn=dict(type=default_collate_fn)) |
|
|
|
|
|
|
|
|
|
|
|
optim_wrapper = dict( |
|
type=AmpOptimWrapper, |
|
optimizer=dict( |
|
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), |
|
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), |
|
accumulative_counts=accumulative_counts, |
|
loss_scale='dynamic', |
|
dtype='float16') |
|
|
|
|
|
|
|
param_scheduler = dict( |
|
type=CosineAnnealingLR, |
|
eta_min=lr * 0.1, |
|
by_epoch=True, |
|
T_max=max_epochs, |
|
convert_to_iter_based=True) |
|
|
|
|
|
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1) |
|
|
|
|
|
|
|
|
|
|
|
custom_hooks = [ |
|
dict(type=DatasetInfoHook, tokenizer=tokenizer), |
|
dict( |
|
type=EvaluateChatHook, |
|
tokenizer=tokenizer, |
|
every_n_iters=evaluation_freq, |
|
evaluation_inputs=evaluation_inputs, |
|
system=SYSTEM, |
|
prompt_template=prompt_template) |
|
] |
|
|
|
|
|
default_hooks = dict( |
|
|
|
timer=dict(type=IterTimerHook), |
|
|
|
logger=dict(type=LoggerHook, interval=10), |
|
|
|
param_scheduler=dict(type=ParamSchedulerHook), |
|
|
|
checkpoint=dict(type=CheckpointHook, interval=1), |
|
|
|
sampler_seed=dict(type=DistSamplerSeedHook), |
|
) |
|
|
|
|
|
env_cfg = dict( |
|
|
|
cudnn_benchmark=False, |
|
|
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |
|
|
|
dist_cfg=dict(backend='nccl'), |
|
) |
|
|
|
|
|
visualizer = None |
|
|
|
|
|
log_level = 'INFO' |
|
|
|
|
|
load_from = None |
|
|
|
|
|
resume = False |
|
|
|
|
|
randomness = dict(seed=None, deterministic=False) |
|
|