Image-Text-to-Text
xtuner
LZHgrla commited on
Commit
ea53d39
·
verified ·
1 Parent(s): 154fa5f

Delete xtuner_config.py

Browse files
Files changed (1) hide show
  1. xtuner_config.py +0 -208
xtuner_config.py DELETED
@@ -1,208 +0,0 @@
1
- SYSTEM = ''
2
- accumulative_counts = 1
3
- batch_size = 16
4
- betas = (
5
- 0.9,
6
- 0.999,
7
- )
8
- custom_hooks = [
9
- dict(
10
- tokenizer=dict(
11
- padding_side='right',
12
- pretrained_model_name_or_path='lmsys/vicuna-7b-v1.5',
13
- trust_remote_code=True,
14
- type='transformers.AutoTokenizer.from_pretrained'),
15
- type='xtuner.engine.DatasetInfoHook'),
16
- dict(
17
- evaluation_images='https://llava-vl.github.io/static/images/view.jpg',
18
- evaluation_inputs=[
19
- '请描述一下这张照片',
20
- 'Please describe this picture',
21
- ],
22
- every_n_iters=500,
23
- image_processor=dict(
24
- pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
25
- trust_remote_code=True,
26
- type='transformers.CLIPImageProcessor.from_pretrained'),
27
- prompt_template='xtuner.utils.PROMPT_TEMPLATE.vicuna',
28
- system='',
29
- tokenizer=dict(
30
- padding_side='right',
31
- pretrained_model_name_or_path='lmsys/vicuna-7b-v1.5',
32
- trust_remote_code=True,
33
- type='transformers.AutoTokenizer.from_pretrained'),
34
- type='xtuner.engine.EvaluateChatHook'),
35
- ]
36
- data_path = './data/llava_data/LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
37
- dataloader_num_workers = 0
38
- default_hooks = dict(
39
- checkpoint=dict(interval=1, type='mmengine.hooks.CheckpointHook'),
40
- logger=dict(interval=10, type='mmengine.hooks.LoggerHook'),
41
- param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
42
- sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
43
- timer=dict(type='mmengine.hooks.IterTimerHook'))
44
- env_cfg = dict(
45
- cudnn_benchmark=False,
46
- dist_cfg=dict(backend='nccl'),
47
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
48
- evaluation_freq = 500
49
- evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
50
- evaluation_inputs = [
51
- '请描述一下这张照片',
52
- 'Please describe this picture',
53
- ]
54
- image_folder = './data/llava_data/llava_images'
55
- launcher = 'pytorch'
56
- llava_data_root = './data/llava_data/'
57
- llava_dataset = dict(
58
- data_path='./data/llava_data/LLaVA-Instruct-150K/llava_v1_5_mix665k.json',
59
- dataset_map_fn='xtuner.dataset.map_fns.llava_map_fn',
60
- image_folder='./data/llava_data/llava_images',
61
- max_length=1472,
62
- pad_image_to_square=True,
63
- image_processor=dict(
64
- pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
65
- trust_remote_code=True,
66
- type='transformers.CLIPImageProcessor.from_pretrained'),
67
- template_map_fn=dict(
68
- template='xtuner.utils.PROMPT_TEMPLATE.vicuna',
69
- type='xtuner.dataset.map_fns.template_map_fn_factory'),
70
- tokenizer=dict(
71
- padding_side='right',
72
- pretrained_model_name_or_path='lmsys/vicuna-7b-v1.5',
73
- trust_remote_code=True,
74
- type='transformers.AutoTokenizer.from_pretrained'),
75
- type='xtuner.dataset.LLaVADataset')
76
- llm_name_or_path = 'lmsys/vicuna-7b-v1.5'
77
- load_from = None
78
- log_level = 'INFO'
79
- lr = 0.0002
80
- max_epochs = 1
81
- max_length = 1472
82
- max_norm = 1
83
- model = dict(
84
- freeze_llm=True,
85
- freeze_visual_encoder=True,
86
- llm=dict(
87
- pretrained_model_name_or_path='lmsys/vicuna-7b-v1.5',
88
- quantization_config=dict(
89
- bnb_4bit_compute_dtype='torch.float16',
90
- bnb_4bit_quant_type='nf4',
91
- bnb_4bit_use_double_quant=True,
92
- llm_int8_has_fp16_weight=False,
93
- llm_int8_threshold=6.0,
94
- load_in_4bit=True,
95
- load_in_8bit=False,
96
- type='transformers.BitsAndBytesConfig'),
97
- torch_dtype='torch.float16',
98
- trust_remote_code=True,
99
- type='transformers.AutoModelForCausalLM.from_pretrained'),
100
- llm_lora=dict(
101
- bias='none',
102
- lora_alpha=256,
103
- lora_dropout=0.05,
104
- r=512,
105
- task_type='CAUSAL_LM',
106
- type='peft.LoraConfig'),
107
- pretrained_pth=
108
- './work_dirs/llava_vicuna_7b_v15_clip_vit_large_p14_336_e1_gpu8_pretrain/epoch_1.pth',
109
- type='xtuner.model.LLaVAModel',
110
- visual_encoder=dict(
111
- pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
112
- type='transformers.CLIPVisionModel.from_pretrained'),
113
- visual_encoder_lora=dict(
114
- bias='none',
115
- lora_alpha=16,
116
- lora_dropout=0.05,
117
- r=64,
118
- type='peft.LoraConfig'))
119
- optim_type = 'torch.optim.AdamW'
120
- optim_wrapper = dict(
121
- optimizer=dict(
122
- betas=(
123
- 0.9,
124
- 0.999,
125
- ),
126
- lr=0.0002,
127
- type='torch.optim.AdamW',
128
- weight_decay=0),
129
- type='DeepSpeedOptimWrapper')
130
- param_scheduler = [
131
- dict(
132
- begin=0,
133
- by_epoch=True,
134
- convert_to_iter_based=True,
135
- end=0.03,
136
- start_factor=1e-05,
137
- type='mmengine.optim.LinearLR'),
138
- dict(
139
- T_max=1,
140
- begin=0.03,
141
- by_epoch=True,
142
- convert_to_iter_based=True,
143
- eta_min=0.0,
144
- type='mmengine.optim.CosineAnnealingLR'),
145
- ]
146
- pretrained_pth = './work_dirs/llava_vicuna_7b_v15_clip_vit_large_p14_336_e1_gpu8_pretrain/epoch_1.pth'
147
- image_processor = dict(
148
- pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
149
- trust_remote_code=True,
150
- type='transformers.CLIPImageProcessor.from_pretrained')
151
- prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.vicuna'
152
- randomness = dict(deterministic=False, seed=None)
153
- resume = False
154
- runner_type = 'FlexibleRunner'
155
- strategy = dict(
156
- config=dict(
157
- bf16=dict(enabled=True),
158
- fp16=dict(enabled=False, initial_scale_power=16),
159
- gradient_accumulation_steps='auto',
160
- gradient_clipping='auto',
161
- train_micro_batch_size_per_gpu='auto',
162
- zero_allow_untested_optimizer=True,
163
- zero_force_ds_cpu_optimizer=False,
164
- zero_optimization=dict(overlap_comm=True, stage=2)),
165
- exclude_frozen_parameters=True,
166
- gradient_accumulation_steps=1,
167
- gradient_clipping=1,
168
- train_micro_batch_size_per_gpu=16,
169
- type='xtuner.engine.DeepSpeedStrategy')
170
- tokenizer = dict(
171
- padding_side='right',
172
- pretrained_model_name_or_path='lmsys/vicuna-7b-v1.5',
173
- trust_remote_code=True,
174
- type='transformers.AutoTokenizer.from_pretrained')
175
- train_cfg = dict(by_epoch=True, max_epochs=1, val_interval=1)
176
- train_dataloader = dict(
177
- batch_size=16,
178
- collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
179
- dataset=dict(
180
- data_path=
181
- './data/llava_data/LLaVA-Instruct-150K/llava_v1_5_mix665k.json',
182
- dataset_map_fn='xtuner.dataset.map_fns.llava_map_fn',
183
- image_folder='./data/llava_data/llava_images',
184
- max_length=1472,
185
- pad_image_to_square=True,
186
- image_processor=dict(
187
- pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
188
- trust_remote_code=True,
189
- type='transformers.CLIPImageProcessor.from_pretrained'),
190
- template_map_fn=dict(
191
- template='xtuner.utils.PROMPT_TEMPLATE.vicuna',
192
- type='xtuner.dataset.map_fns.template_map_fn_factory'),
193
- tokenizer=dict(
194
- padding_side='right',
195
- pretrained_model_name_or_path='lmsys/vicuna-7b-v1.5',
196
- trust_remote_code=True,
197
- type='transformers.AutoTokenizer.from_pretrained'),
198
- type='xtuner.dataset.LLaVADataset'),
199
- num_workers=0,
200
- sampler=dict(
201
- length_property='modality_length',
202
- per_device_batch_size=16,
203
- type='xtuner.dataset.samplers.LengthGroupedSampler'))
204
- visual_encoder_name_or_path = 'openai/clip-vit-large-patch14-336'
205
- visualizer = None
206
- warmup_ratio = 0.03
207
- weight_decay = 0
208
- work_dir = './work_dirs/llava_vicuna_7b_v15_qlora_clip_vit_large_p14_336_lora_e1_gpu8_finetune'