pom commited on
Commit
4f64cdc
1 Parent(s): daa34ce

Update README.md && clean files

Browse files
Files changed (3) hide show
  1. README.md +11 -11
  2. modeling_xverse.py +870 -870
  3. tokenizer.model +0 -3
README.md CHANGED
@@ -36,20 +36,20 @@ inference: false
36
  | 模型 | 类型 | MMLU | C-Eval | AGIEval<sup>1</sup> | GAOKAO-Bench<sup>1</sup> | GAOKAO-English<sup>1</sup> |
37
  | :------------------------: | :--------------: | :--------------: | :--------------: | :-----------------: | :----------------------: | :------------------------: |
38
  | Baichuan-13B | 底座 | 51.6<sup>2</sup> | 53.6<sup>3</sup> | 40.5 | 45.9 | 56.9 |
39
- | Baichuan-13B-Chat | 对齐 | 52.1<sup>2</sup> | 51.5<sup>2</sup> | 34.6 | 46.7 | 63.8 |
40
- | Chinese-Alpaca-2-13B | 对齐 | 53.2 | 41.3 | 36.6 | 38.4 | 65.1 |
41
  | Llama-1-13B | 底座 | 46.9<sup>4</sup> | 28.8 | 27.3 | 26.4 | 38.1 |
42
  | Llama-2-13B | 底座 | 54.8<sup>4</sup> | 35.6 | 33.4 | 35.4 | 60.6 |
43
  | moss-moon-003-base (16B) | 底座 | 24.7 | 33.1<sup>3</sup> | 26.8 | 28.5 | 34.7 |
44
- | moss-moon-003-sft (16B) | 对齐 | 25.5 | 33.6 | 27.6 | 28.8 | 29.2 |
45
  | OpenLLaMA-13B | 底座 | 42.4 | 24.7 | 24.0 | 25.6 | 33.3 |
46
  | OPT-13B | 底座 | 25.2 | 25.0 | 24.2 | 24.4 | 31.1 |
47
  | Pythia-12B | 底座 | 25.1 | 26.2 | 25.3 | 25.3 | 26.8 |
48
- | Vicuna-13B-v1.5 | 对齐 | 53.5 | 27.9 | 29.7 | 31.6 | 52.9 |
49
  | Ziya-LLaMA-13B-Pretrain-v1| 底座 | 43.9 | 30.2 | 27.2 | 26.4 | 37.6 |
50
- | Ziya-LLaMA-13B-v1.1 | 对齐 | 50.6 | 29.3 | 23.6 | 26.7 | 27.3 |
51
  | **XVERSE-13B** | 底座 | **55.1** | **54.7** | **41.4** | **53.9** | **66.5** |
52
- | **XVERSE-13B-Chat** | 对齐 | **60.2** | **53.1** | **48.3** | **50.7** | **80.6** |
53
 
54
  > <sup>1:只针对其中的单项选择题进行测试,即排除了填空题、开放性问题和多项选择题</sup>
55
  > <sup>2:来源于 [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) 的汇报结果</sup>
@@ -63,7 +63,7 @@ inference: false
63
  In order to validate the various abilities of the model, we have chosen several comprehensive capability benchmarks across multiple disciplines, including [MMLU](https://arxiv.org/abs/2009.03300) (English), [C-Eval](https://cevalbenchmark.com/) (Chinese), [AGIEval](https://arxiv.org/abs/2304.06364) (Chinese and English), [GAOKAO-Bench](https://github.com/OpenLMLab/GAOKAO-Bench) (Chinese and English), [GAOKAO-English](https://github.com/ExpressAI/AI-Gaokao) (English), the evaluation results are as follows:
64
 
65
 
66
- | Models | Categories | MMLU | C-Eval | AGIEval<sup>1</sup> | GAOKAO-Bench<sup>1</sup> | GAOKAO-English<sup>1</sup> |
67
  | :------------------------: | :--------------: | :--------------: | :--------------: | :-----------------: | :----------------------: | :------------------------: |
68
  | Baichuan-13B | pretrained | 51.6<sup>2</sup> | 53.6<sup>3</sup> | 40.5 | 45.9 | 56.9 |
69
  | Baichuan-13B-Chat | fine-tuned | 52.1<sup>2</sup> | 51.5<sup>2</sup> | 34.6 | 46.7 | 63.8 |
@@ -93,7 +93,7 @@ In order to validate the various abilities of the model, we have chosen several
93
 
94
  MMLU Category Results
95
 
96
- | Models | Categories | Average | STEM | Social Science | Humanities | Others |
97
  | :------------------------: | :------------------------: | :------: | :------: | :------------: | :--------: | :------: |
98
  | Baichuan-13B | pretrained | 51.6 | 41.6 | 60.9 | 47.4 | 58.5 |
99
  | Baichuan-13B-Chat | fine-tuned | 52.1 | 40.9 | 60.9 | 48.8 | 59.0 |
@@ -115,7 +115,7 @@ MMLU Category Results
115
 
116
  C-Eval Category Results
117
 
118
- | Models | Categories | Average | STEM | Social Science | Humanities | Others |
119
  | :------------------------: | :------------------------: | :------: | :------: | :------------: | :--------: | :------: |
120
  | Baichuan-13B | pretrained | 53.6 | 47.0 | 66.8 | 57.3 | 49.8 |
121
  | Baichuan-13B-Chat | fine-tuned | 51.5 | 43.7 | 64.6 | 56.2 | 49.2 |
@@ -142,7 +142,7 @@ The XVERSE-13B-Chat model can be loaded for chat using the following code:
142
  ```python
143
  import torch
144
  from transformers import AutoTokenizer, AutoModelForCausalLM
145
- from transformers,generation.utils import GenerationConfig
146
  model_path = "xverse/XVERSE-13B-Chat"
147
  tokenizer = AutoTokenizer.from_pretrained(model_path)
148
  model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
@@ -159,7 +159,7 @@ print(response)
159
 
160
  更多细节,包括对话demo、模型微调及量化等,请参考我们的[Github](https://github.com/xverse-ai/XVERSE-13B)。
161
 
162
- For more details, including dialog demo, model fine-tuning and quantization, please refer to our [Github](https://github.com/xverse-ai/XVERSE-13B).
163
 
164
  ## 局限性与免责申明
165
 
 
36
  | 模型 | 类型 | MMLU | C-Eval | AGIEval<sup>1</sup> | GAOKAO-Bench<sup>1</sup> | GAOKAO-English<sup>1</sup> |
37
  | :------------------------: | :--------------: | :--------------: | :--------------: | :-----------------: | :----------------------: | :------------------------: |
38
  | Baichuan-13B | 底座 | 51.6<sup>2</sup> | 53.6<sup>3</sup> | 40.5 | 45.9 | 56.9 |
39
+ | Baichuan-13B-Chat | 对话 | 52.1<sup>2</sup> | 51.5<sup>2</sup> | 34.6 | 46.7 | 63.8 |
40
+ | Chinese-Alpaca-2-13B | 对话 | 53.2 | 41.3 | 36.6 | 38.4 | 65.1 |
41
  | Llama-1-13B | 底座 | 46.9<sup>4</sup> | 28.8 | 27.3 | 26.4 | 38.1 |
42
  | Llama-2-13B | 底座 | 54.8<sup>4</sup> | 35.6 | 33.4 | 35.4 | 60.6 |
43
  | moss-moon-003-base (16B) | 底座 | 24.7 | 33.1<sup>3</sup> | 26.8 | 28.5 | 34.7 |
44
+ | moss-moon-003-sft (16B) | 对话 | 25.5 | 33.6 | 27.6 | 28.8 | 29.2 |
45
  | OpenLLaMA-13B | 底座 | 42.4 | 24.7 | 24.0 | 25.6 | 33.3 |
46
  | OPT-13B | 底座 | 25.2 | 25.0 | 24.2 | 24.4 | 31.1 |
47
  | Pythia-12B | 底座 | 25.1 | 26.2 | 25.3 | 25.3 | 26.8 |
48
+ | Vicuna-13B-v1.5 | 对话 | 53.5 | 27.9 | 29.7 | 31.6 | 52.9 |
49
  | Ziya-LLaMA-13B-Pretrain-v1| 底座 | 43.9 | 30.2 | 27.2 | 26.4 | 37.6 |
50
+ | Ziya-LLaMA-13B-v1.1 | 对话 | 50.6 | 29.3 | 23.6 | 26.7 | 27.3 |
51
  | **XVERSE-13B** | 底座 | **55.1** | **54.7** | **41.4** | **53.9** | **66.5** |
52
+ | **XVERSE-13B-Chat** | 对话 | **60.2** | **53.1** | **48.3** | **50.7** | **80.6** |
53
 
54
  > <sup>1:只针对其中的单项选择题进行测试,即排除了填空题、开放性问题和多项选择题</sup>
55
  > <sup>2:来源于 [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) 的汇报结果</sup>
 
63
  In order to validate the various abilities of the model, we have chosen several comprehensive capability benchmarks across multiple disciplines, including [MMLU](https://arxiv.org/abs/2009.03300) (English), [C-Eval](https://cevalbenchmark.com/) (Chinese), [AGIEval](https://arxiv.org/abs/2304.06364) (Chinese and English), [GAOKAO-Bench](https://github.com/OpenLMLab/GAOKAO-Bench) (Chinese and English), [GAOKAO-English](https://github.com/ExpressAI/AI-Gaokao) (English), the evaluation results are as follows:
64
 
65
 
66
+ | Models | Type | MMLU | C-Eval | AGIEval<sup>1</sup> | GAOKAO-Bench<sup>1</sup> | GAOKAO-English<sup>1</sup> |
67
  | :------------------------: | :--------------: | :--------------: | :--------------: | :-----------------: | :----------------------: | :------------------------: |
68
  | Baichuan-13B | pretrained | 51.6<sup>2</sup> | 53.6<sup>3</sup> | 40.5 | 45.9 | 56.9 |
69
  | Baichuan-13B-Chat | fine-tuned | 52.1<sup>2</sup> | 51.5<sup>2</sup> | 34.6 | 46.7 | 63.8 |
 
93
 
94
  MMLU Category Results
95
 
96
+ | Models | Type | Average | STEM | Social Science | Humanities | Others |
97
  | :------------------------: | :------------------------: | :------: | :------: | :------------: | :--------: | :------: |
98
  | Baichuan-13B | pretrained | 51.6 | 41.6 | 60.9 | 47.4 | 58.5 |
99
  | Baichuan-13B-Chat | fine-tuned | 52.1 | 40.9 | 60.9 | 48.8 | 59.0 |
 
115
 
116
  C-Eval Category Results
117
 
118
+ | Models | Type | Average | STEM | Social Science | Humanities | Others |
119
  | :------------------------: | :------------------------: | :------: | :------: | :------------: | :--------: | :------: |
120
  | Baichuan-13B | pretrained | 53.6 | 47.0 | 66.8 | 57.3 | 49.8 |
121
  | Baichuan-13B-Chat | fine-tuned | 51.5 | 43.7 | 64.6 | 56.2 | 49.2 |
 
142
  ```python
143
  import torch
144
  from transformers import AutoTokenizer, AutoModelForCausalLM
145
+ from transformers.generation.utils import GenerationConfig
146
  model_path = "xverse/XVERSE-13B-Chat"
147
  tokenizer = AutoTokenizer.from_pretrained(model_path)
148
  model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
 
159
 
160
  更多细节,包括对话demo、模型微调及量化等,请参考我们的[Github](https://github.com/xverse-ai/XVERSE-13B)。
161
 
162
+ For more details, including chat demo, model fine-tuning and quantization, please refer to our [Github](https://github.com/xverse-ai/XVERSE-13B).
163
 
164
  ## 局限性与免责申明
165
 
modeling_xverse.py CHANGED
@@ -1,870 +1,870 @@
1
- # coding=utf-8
2
- # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ PyTorch XVERSE model."""
21
- import math
22
- from typing import List, Optional, Tuple, Union
23
-
24
- import torch
25
- import torch.nn.functional as F
26
- import torch.utils.checkpoint
27
- from torch import nn
28
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
-
30
- from transformers.activations import ACT2FN
31
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
32
- from transformers.modeling_utils import PreTrainedModel
33
- from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
34
- from transformers.generation.utils import GenerationConfig
35
- from .configuration_xverse import XverseConfig
36
-
37
-
38
- logger = logging.get_logger(__name__)
39
-
40
- _CONFIG_FOR_DOC = "XverseConfig"
41
-
42
-
43
- # Copied from transformers.models.bart.modeling_bart._make_causal_mask
44
- def _make_causal_mask(
45
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
46
- ):
47
- """
48
- Make causal mask used for bi-directional self-attention.
49
- """
50
- bsz, tgt_len = input_ids_shape
51
- mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
52
- mask_cond = torch.arange(mask.size(-1), device=device)
53
- mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
54
- mask = mask.to(dtype)
55
-
56
- if past_key_values_length > 0:
57
- mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
58
- return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
59
-
60
-
61
- # Copied from transformers.models.bart.modeling_bart._expand_mask
62
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
63
- """
64
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
65
- """
66
- bsz, src_len = mask.size()
67
- tgt_len = tgt_len if tgt_len is not None else src_len
68
-
69
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
70
-
71
- inverted_mask = 1.0 - expanded_mask
72
-
73
- return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
74
-
75
-
76
- class XverseRMSNorm(nn.Module):
77
- def __init__(self, hidden_size, eps=1e-6):
78
- """
79
- XverseRMSNorm is equivalent to T5LayerNorm
80
- """
81
- super().__init__()
82
- self.weight = nn.Parameter(torch.ones(hidden_size))
83
- self.variance_epsilon = eps
84
-
85
- def forward(self, hidden_states):
86
- input_dtype = hidden_states.dtype
87
- variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
88
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
89
-
90
- return (self.weight * hidden_states).to(input_dtype)
91
-
92
-
93
- class XverseRotaryEmbedding(torch.nn.Module):
94
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
95
- super().__init__()
96
- inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
97
- self.register_buffer("inv_freq", inv_freq)
98
-
99
- # Build here to make `torch.jit.trace` work.
100
- self.max_seq_len_cached = max_position_embeddings
101
- t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
102
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
103
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
104
- emb = torch.cat((freqs, freqs), dim=-1)
105
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
106
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
107
-
108
- def forward(self, x, seq_len=None):
109
- # x: [bs, num_attention_heads, seq_len, head_size]
110
- # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
111
- if seq_len > self.max_seq_len_cached:
112
- self.max_seq_len_cached = seq_len
113
- t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
114
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
115
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
116
- emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
117
- self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
118
- self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
119
- return (
120
- self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
121
- self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
122
- )
123
-
124
-
125
- def rotate_half(x):
126
- """Rotates half the hidden dims of the input."""
127
- x1 = x[..., : x.shape[-1] // 2]
128
- x2 = x[..., x.shape[-1] // 2 :]
129
- return torch.cat((-x2, x1), dim=-1)
130
-
131
-
132
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
133
- # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
134
- cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
135
- sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
136
- cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
137
- sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
138
- q_embed = (q * cos) + (rotate_half(q) * sin)
139
- k_embed = (k * cos) + (rotate_half(k) * sin)
140
- return q_embed, k_embed
141
-
142
-
143
- class XverseMLP(nn.Module):
144
- def __init__(
145
- self,
146
- hidden_size: int,
147
- intermediate_size: int,
148
- hidden_act: str,
149
- ):
150
- super().__init__()
151
- self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
152
- self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
153
- self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
154
- self.act_fn = ACT2FN[hidden_act]
155
-
156
- def forward(self, x):
157
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
158
-
159
-
160
- class XverseAttention(nn.Module):
161
- """Multi-headed attention from 'Attention Is All You Need' paper"""
162
-
163
- def __init__(self, config: XverseConfig):
164
- super().__init__()
165
- self.config = config
166
- self.hidden_size = config.hidden_size
167
- self.num_heads = config.num_attention_heads
168
- self.head_dim = self.hidden_size // self.num_heads
169
- self.max_position_embeddings = config.max_position_embeddings
170
-
171
- if (self.head_dim * self.num_heads) != self.hidden_size:
172
- raise ValueError(
173
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
174
- f" and `num_heads`: {self.num_heads})."
175
- )
176
- self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
177
- self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
178
- self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
179
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
180
- self.rotary_emb = XverseRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
181
-
182
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
183
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
184
-
185
- def forward(
186
- self,
187
- hidden_states: torch.Tensor,
188
- attention_mask: Optional[torch.Tensor] = None,
189
- position_ids: Optional[torch.LongTensor] = None,
190
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
191
- output_attentions: bool = False,
192
- use_cache: bool = False,
193
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
194
- bsz, q_len, _ = hidden_states.size()
195
-
196
- query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
197
- key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
198
- value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
199
-
200
- kv_seq_len = key_states.shape[-2]
201
- if past_key_value is not None:
202
- kv_seq_len += past_key_value[0].shape[-2]
203
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
204
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
205
- # [bsz, nh, t, hd]
206
-
207
- if past_key_value is not None:
208
- # reuse k, v, self_attention
209
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
210
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
211
-
212
- past_key_value = (key_states, value_states) if use_cache else None
213
-
214
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
215
-
216
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
217
- raise ValueError(
218
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
219
- f" {attn_weights.size()}"
220
- )
221
-
222
- if attention_mask is not None:
223
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
224
- raise ValueError(
225
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
226
- )
227
- attn_weights = attn_weights + attention_mask
228
- attn_weights = torch.max(
229
- attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
230
- )
231
-
232
- # upcast attention to fp32
233
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
234
- attn_output = torch.matmul(attn_weights, value_states)
235
-
236
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
237
- raise ValueError(
238
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
239
- f" {attn_output.size()}"
240
- )
241
-
242
- attn_output = attn_output.transpose(1, 2)
243
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
244
-
245
- attn_output = self.o_proj(attn_output)
246
-
247
- if not output_attentions:
248
- attn_weights = None
249
-
250
- return attn_output, attn_weights, past_key_value
251
-
252
-
253
- class XverseDecoderLayer(nn.Module):
254
- def __init__(self, config: XverseConfig):
255
- super().__init__()
256
- self.hidden_size = config.hidden_size
257
- self.self_attn = XverseAttention(config=config)
258
- self.mlp = XverseMLP(
259
- hidden_size=self.hidden_size,
260
- intermediate_size=config.intermediate_size,
261
- hidden_act=config.hidden_act,
262
- )
263
- self.input_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
264
- self.post_attention_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
265
-
266
- def forward(
267
- self,
268
- hidden_states: torch.Tensor,
269
- attention_mask: Optional[torch.Tensor] = None,
270
- position_ids: Optional[torch.LongTensor] = None,
271
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
272
- output_attentions: Optional[bool] = False,
273
- use_cache: Optional[bool] = False,
274
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
275
- """
276
- Args:
277
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
278
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
279
- `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
280
- output_attentions (`bool`, *optional*):
281
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
282
- returned tensors for more detail.
283
- use_cache (`bool`, *optional*):
284
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
285
- (see `past_key_values`).
286
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
287
- """
288
-
289
- residual = hidden_states
290
-
291
- hidden_states = self.input_layernorm(hidden_states)
292
-
293
- # Self Attention
294
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
295
- hidden_states=hidden_states,
296
- attention_mask=attention_mask,
297
- position_ids=position_ids,
298
- past_key_value=past_key_value,
299
- output_attentions=output_attentions,
300
- use_cache=use_cache,
301
- )
302
- hidden_states = residual + hidden_states
303
-
304
- # Fully Connected
305
- residual = hidden_states
306
- hidden_states = self.post_attention_layernorm(hidden_states)
307
- hidden_states = self.mlp(hidden_states)
308
- hidden_states = residual + hidden_states
309
-
310
- outputs = (hidden_states,)
311
-
312
- if output_attentions:
313
- outputs += (self_attn_weights,)
314
-
315
- if use_cache:
316
- outputs += (present_key_value,)
317
-
318
- return outputs
319
-
320
-
321
- XVERSE_START_DOCSTRING = r"""
322
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
323
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
324
- etc.)
325
-
326
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
327
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
328
- and behavior.
329
-
330
- Parameters:
331
- config ([`XverseConfig`]):
332
- Model configuration class with all the parameters of the model. Initializing with a config file does not
333
- load the weights associated with the model, only the configuration. Check out the
334
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
335
- """
336
-
337
-
338
- @add_start_docstrings(
339
- "The bare Xverse Model outputting raw hidden-states without any specific head on top.",
340
- XVERSE_START_DOCSTRING,
341
- )
342
- class XversePreTrainedModel(PreTrainedModel):
343
- config_class = XverseConfig
344
- base_model_prefix = "model"
345
- supports_gradient_checkpointing = True
346
- _no_split_modules = ["XverseDecoderLayer"]
347
- _skip_keys_device_placement = "past_key_values"
348
- _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
349
-
350
- def _init_weights(self, module):
351
- std = self.config.initializer_range
352
- if isinstance(module, nn.Linear):
353
- module.weight.data.normal_(mean=0.0, std=std)
354
- if module.bias is not None:
355
- module.bias.data.zero_()
356
- elif isinstance(module, nn.Embedding):
357
- module.weight.data.normal_(mean=0.0, std=std)
358
- if module.padding_idx is not None:
359
- module.weight.data[module.padding_idx].zero_()
360
-
361
- def _set_gradient_checkpointing(self, module, value=False):
362
- if isinstance(module, XverseModel):
363
- module.gradient_checkpointing = value
364
-
365
-
366
- XVERSE_INPUTS_DOCSTRING = r"""
367
- Args:
368
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
369
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
370
- it.
371
-
372
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
373
- [`PreTrainedTokenizer.__call__`] for details.
374
-
375
- [What are input IDs?](../glossary#input-ids)
376
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
377
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
378
-
379
- - 1 for tokens that are **not masked**,
380
- - 0 for tokens that are **masked**.
381
-
382
- [What are attention masks?](../glossary#attention-mask)
383
-
384
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
385
- [`PreTrainedTokenizer.__call__`] for details.
386
-
387
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
388
- `past_key_values`).
389
-
390
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
391
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
392
- information on the default strategy.
393
-
394
- - 1 indicates the head is **not masked**,
395
- - 0 indicates the head is **masked**.
396
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
397
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
398
- config.n_positions - 1]`.
399
-
400
- [What are position IDs?](../glossary#position-ids)
401
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
402
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
403
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
404
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
405
-
406
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
407
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
408
-
409
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
410
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
411
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
412
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
413
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
414
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
415
- model's internal embedding lookup matrix.
416
- use_cache (`bool`, *optional*):
417
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
418
- `past_key_values`).
419
- output_attentions (`bool`, *optional*):
420
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
421
- tensors for more detail.
422
- output_hidden_states (`bool`, *optional*):
423
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
424
- more detail.
425
- return_dict (`bool`, *optional*):
426
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
427
- """
428
-
429
- @add_start_docstrings(
430
- "The bare Xverse Model outputting raw hidden-states without any specific head on top.",
431
- XVERSE_START_DOCSTRING,
432
- )
433
- class XverseModel(XversePreTrainedModel):
434
- """
435
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`XverseDecoderLayer`]
436
-
437
- Args:
438
- config: XverseConfig
439
- """
440
-
441
- def __init__(self, config: XverseConfig):
442
- super().__init__(config)
443
- self.padding_idx = config.pad_token_id
444
- self.vocab_size = config.vocab_size
445
-
446
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
447
- self.layers = nn.ModuleList([XverseDecoderLayer(config) for _ in range(config.num_hidden_layers)])
448
- self.norm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
449
-
450
- self.gradient_checkpointing = False
451
- # Initialize weights and apply final processing
452
- self.post_init()
453
-
454
- def get_input_embeddings(self):
455
- return self.embed_tokens
456
-
457
- def set_input_embeddings(self, value):
458
- self.embed_tokens = value
459
-
460
- # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
461
- def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
462
- # create causal mask
463
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
464
- combined_attention_mask = None
465
- if input_shape[-1] > 1:
466
- combined_attention_mask = _make_causal_mask(
467
- input_shape,
468
- inputs_embeds.dtype,
469
- device=inputs_embeds.device,
470
- past_key_values_length=past_key_values_length,
471
- )
472
-
473
- if attention_mask is not None:
474
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
475
- expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
476
- inputs_embeds.device
477
- )
478
- combined_attention_mask = (
479
- expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
480
- )
481
-
482
- return combined_attention_mask
483
-
484
- @add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
485
- def forward(
486
- self,
487
- input_ids: torch.LongTensor = None,
488
- attention_mask: Optional[torch.Tensor] = None,
489
- position_ids: Optional[torch.LongTensor] = None,
490
- past_key_values: Optional[List[torch.FloatTensor]] = None,
491
- inputs_embeds: Optional[torch.FloatTensor] = None,
492
- use_cache: Optional[bool] = None,
493
- output_attentions: Optional[bool] = None,
494
- output_hidden_states: Optional[bool] = None,
495
- return_dict: Optional[bool] = None,
496
- ) -> Union[Tuple, BaseModelOutputWithPast]:
497
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
498
- output_hidden_states = (
499
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
500
- )
501
- use_cache = use_cache if use_cache is not None else self.config.use_cache
502
-
503
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
504
-
505
- # retrieve input_ids and inputs_embeds
506
- if input_ids is not None and inputs_embeds is not None:
507
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
508
- elif input_ids is not None:
509
- batch_size, seq_length = input_ids.shape
510
- elif inputs_embeds is not None:
511
- batch_size, seq_length, _ = inputs_embeds.shape
512
- else:
513
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
514
-
515
- seq_length_with_past = seq_length
516
- past_key_values_length = 0
517
-
518
- if past_key_values is not None:
519
- past_key_values_length = past_key_values[0][0].shape[2]
520
- seq_length_with_past = seq_length_with_past + past_key_values_length
521
-
522
- if position_ids is None:
523
- device = input_ids.device if input_ids is not None else inputs_embeds.device
524
- position_ids = torch.arange(
525
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
526
- )
527
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
528
- else:
529
- position_ids = position_ids.view(-1, seq_length).long()
530
-
531
- if inputs_embeds is None:
532
- inputs_embeds = self.embed_tokens(input_ids)
533
- # embed positions
534
- if attention_mask is None:
535
- attention_mask = torch.ones(
536
- (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
537
- )
538
- attention_mask = self._prepare_decoder_attention_mask(
539
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
540
- )
541
-
542
- hidden_states = inputs_embeds
543
-
544
- if self.gradient_checkpointing and self.training:
545
- if use_cache:
546
- logger.warning_once(
547
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
548
- )
549
- use_cache = False
550
-
551
- # decoder layers
552
- all_hidden_states = () if output_hidden_states else None
553
- all_self_attns = () if output_attentions else None
554
- next_decoder_cache = () if use_cache else None
555
-
556
- for idx, decoder_layer in enumerate(self.layers):
557
- if output_hidden_states:
558
- all_hidden_states += (hidden_states,)
559
-
560
- past_key_value = past_key_values[idx] if past_key_values is not None else None
561
-
562
- if self.gradient_checkpointing and self.training:
563
-
564
- def create_custom_forward(module):
565
- def custom_forward(*inputs):
566
- # None for past_key_value
567
- return module(*inputs, output_attentions, None)
568
-
569
- return custom_forward
570
-
571
- layer_outputs = torch.utils.checkpoint.checkpoint(
572
- create_custom_forward(decoder_layer),
573
- hidden_states,
574
- attention_mask,
575
- position_ids,
576
- None,
577
- )
578
- else:
579
- layer_outputs = decoder_layer(
580
- hidden_states,
581
- attention_mask=attention_mask,
582
- position_ids=position_ids,
583
- past_key_value=past_key_value,
584
- output_attentions=output_attentions,
585
- use_cache=use_cache,
586
- )
587
-
588
- hidden_states = layer_outputs[0]
589
-
590
- if use_cache:
591
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
592
-
593
- if output_attentions:
594
- all_self_attns += (layer_outputs[1],)
595
-
596
- hidden_states = self.norm(hidden_states)
597
-
598
- # add hidden states from the last decoder layer
599
- if output_hidden_states:
600
- all_hidden_states += (hidden_states,)
601
-
602
- next_cache = next_decoder_cache if use_cache else None
603
- if not return_dict:
604
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
605
- return BaseModelOutputWithPast(
606
- last_hidden_state=hidden_states,
607
- past_key_values=next_cache,
608
- hidden_states=all_hidden_states,
609
- attentions=all_self_attns,
610
- )
611
-
612
-
613
- class XverseForCausalLM(XversePreTrainedModel):
614
- _tied_weights_keys = ["lm_head.weight"]
615
-
616
- def __init__(self, config):
617
- super().__init__(config)
618
- self.model = XverseModel(config)
619
-
620
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
621
-
622
- # Initialize weights and apply final processing
623
- self.post_init()
624
-
625
- def get_input_embeddings(self):
626
- return self.model.embed_tokens
627
-
628
- def set_input_embeddings(self, value):
629
- self.model.embed_tokens = value
630
-
631
- def get_output_embeddings(self):
632
- return self.lm_head
633
-
634
- def set_output_embeddings(self, new_embeddings):
635
- self.lm_head = new_embeddings
636
-
637
- def set_decoder(self, decoder):
638
- self.model = decoder
639
-
640
- def get_decoder(self):
641
- return self.model
642
-
643
- @add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
644
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
645
- def forward(
646
- self,
647
- input_ids: torch.LongTensor = None,
648
- attention_mask: Optional[torch.Tensor] = None,
649
- position_ids: Optional[torch.LongTensor] = None,
650
- past_key_values: Optional[List[torch.FloatTensor]] = None,
651
- inputs_embeds: Optional[torch.FloatTensor] = None,
652
- labels: Optional[torch.LongTensor] = None,
653
- use_cache: Optional[bool] = None,
654
- output_attentions: Optional[bool] = None,
655
- output_hidden_states: Optional[bool] = None,
656
- return_dict: Optional[bool] = None,
657
- ) -> Union[Tuple, CausalLMOutputWithPast]:
658
- r"""
659
- Args:
660
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
661
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
662
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
663
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
664
-
665
- Returns:
666
-
667
- Example:
668
-
669
- ```python
670
- >>> from transformers import AutoTokenizer, AutoModelForCausalLM
671
-
672
- >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS, trust_remote_code=True)
673
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
674
-
675
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
676
- >>> inputs = tokenizer(prompt, return_tensors="pt")
677
-
678
- >>> # Generate
679
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
680
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
681
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
682
- ```"""
683
-
684
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
685
- output_hidden_states = (
686
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
687
- )
688
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
689
-
690
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
691
- outputs = self.model(
692
- input_ids=input_ids,
693
- attention_mask=attention_mask,
694
- position_ids=position_ids,
695
- past_key_values=past_key_values,
696
- inputs_embeds=inputs_embeds,
697
- use_cache=use_cache,
698
- output_attentions=output_attentions,
699
- output_hidden_states=output_hidden_states,
700
- return_dict=return_dict,
701
- )
702
-
703
- hidden_states = outputs[0]
704
- logits = self.lm_head(hidden_states)
705
-
706
- loss = None
707
- if labels is not None:
708
- # Shift so that tokens < n predict n
709
- shift_logits = logits[..., :-1, :].contiguous()
710
- shift_labels = labels[..., 1:].contiguous()
711
- # Flatten the tokens
712
- loss_fct = CrossEntropyLoss()
713
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
714
- shift_labels = shift_labels.view(-1)
715
- # Enable model parallelism
716
- shift_labels = shift_labels.to(shift_logits.device)
717
- loss = loss_fct(shift_logits, shift_labels)
718
-
719
- if not return_dict:
720
- output = (logits,) + outputs[1:]
721
- return (loss,) + output if loss is not None else output
722
-
723
- return CausalLMOutputWithPast(
724
- loss=loss,
725
- logits=logits,
726
- past_key_values=outputs.past_key_values,
727
- hidden_states=outputs.hidden_states,
728
- attentions=outputs.attentions,
729
- )
730
-
731
- def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=2048):
732
- max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
733
- max_input_tokens = self.config.max_position_embeddings - max_new_tokens
734
- max_input_tokens = max(self.config.max_position_embeddings // 2, max_input_tokens)
735
-
736
- total_input, round_input = [], []
737
- user_prompt, assist_prompt = "Human: ", "Assistant: "
738
- for i, message in enumerate(messages[::-1]):
739
- if message['role'] == 'user':
740
- user_content = f"{user_prompt}{message['content']}\n\n"
741
- if i == 0:
742
- user_content += assist_prompt
743
- content_tokens = tokenizer.encode(user_content, return_token_type_ids=False)
744
- round_input = content_tokens + round_input
745
-
746
- if i != 0:
747
- if len(total_input) + len(round_input) > max_input_tokens:
748
- break
749
- else:
750
- total_input = round_input + total_input
751
- else:
752
- total_input = round_input + total_input
753
- if len(total_input) >= max_input_tokens:
754
- break
755
- round_input = []
756
- elif message['role'] == 'assistant':
757
- assist_content = f"{assist_prompt}{message['content']}"
758
- content_tokens = tokenizer.encode(assist_content, return_token_type_ids=False)
759
- round_input = content_tokens + [self.generation_config.eos_token_id] + round_input
760
- else:
761
- raise ValueError(f"message role not supported yet: {message['role']}")
762
- total_input = total_input[-max_input_tokens:] # truncate left
763
- total_input = torch.LongTensor([total_input]).to(self.device)
764
- return total_input
765
-
766
- @torch.no_grad()
767
- def chat(self, tokenizer, messages: List[dict], stream=False,
768
- generation_config: Optional[GenerationConfig]=None):
769
- generation_config = generation_config or self.generation_config
770
- input_ids = self._build_chat_input(tokenizer, messages, generation_config.max_new_tokens)
771
- if stream:
772
- from transformers import TextIteratorStreamer
773
- from threading import Thread
774
- streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
775
- self.__class__.generate = PreTrainedModel.generate
776
-
777
- def stream_generator():
778
- generation_kwargs = dict(inputs=input_ids, generation_config=generation_config, streamer=streamer)
779
- thread = Thread(target=self.generate, kwargs=generation_kwargs)
780
- thread.start()
781
- for next_text in streamer:
782
- yield next_text.rstrip(tokenizer.eos_token)
783
-
784
- return stream_generator()
785
- else:
786
- self.__class__.generate = PreTrainedModel.generate # disable stream
787
- outputs = self.generate(input_ids, generation_config=generation_config)
788
- response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
789
- return response
790
-
791
- def prepare_inputs_for_generation(
792
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
793
- ):
794
- if past_key_values:
795
- input_ids = input_ids[:, -1:]
796
-
797
- position_ids = kwargs.get("position_ids", None)
798
- if attention_mask is not None and position_ids is None:
799
- # create position_ids on the fly for batch generation
800
- position_ids = attention_mask.long().cumsum(-1) - 1
801
- position_ids.masked_fill_(attention_mask == 0, 1)
802
- if past_key_values:
803
- position_ids = position_ids[:, -1].unsqueeze(-1)
804
-
805
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
806
- if inputs_embeds is not None and past_key_values is None:
807
- model_inputs = {"inputs_embeds": inputs_embeds}
808
- else:
809
- model_inputs = {"input_ids": input_ids}
810
-
811
- model_inputs.update(
812
- {
813
- "position_ids": position_ids,
814
- "past_key_values": past_key_values,
815
- "use_cache": kwargs.get("use_cache"),
816
- "attention_mask": attention_mask,
817
- }
818
- )
819
- return model_inputs
820
-
821
- @staticmethod
822
- def _reorder_cache(past_key_values, beam_idx):
823
- reordered_past = ()
824
- for layer_past in past_key_values:
825
- reordered_past += (
826
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
827
- )
828
- return reordered_past
829
-
830
- def quantize(self, bit_length: int):
831
- from .quantization import QuantizationLinear
832
-
833
- for layer in self.model.layers:
834
- layer.self_attn.q_proj = QuantizationLinear(
835
- bit_length=bit_length,
836
- weight=layer.self_attn.q_proj.weight.to(torch.cuda.current_device()),
837
- device=layer.self_attn.q_proj.weight.device,
838
- )
839
- layer.self_attn.k_proj = QuantizationLinear(
840
- bit_length=bit_length,
841
- weight=layer.self_attn.k_proj.weight.to(torch.cuda.current_device()),
842
- device=layer.self_attn.k_proj.weight.device
843
- )
844
- layer.self_attn.v_proj = QuantizationLinear(
845
- bit_length=bit_length,
846
- weight=layer.self_attn.v_proj.weight.to(torch.cuda.current_device()),
847
- device=layer.self_attn.v_proj.weight.device
848
- )
849
- layer.self_attn.o_proj = QuantizationLinear(
850
- bit_length=bit_length,
851
- weight=layer.self_attn.o_proj.weight.to(torch.cuda.current_device()),
852
- device=layer.self_attn.o_proj.weight.device
853
- )
854
- layer.mlp.gate_proj = QuantizationLinear(
855
- bit_length=bit_length,
856
- weight=layer.mlp.gate_proj.weight.to(torch.cuda.current_device()),
857
- device=layer.mlp.gate_proj.weight.device
858
- )
859
- layer.mlp.down_proj = QuantizationLinear(
860
- bit_length=bit_length,
861
- weight=layer.mlp.down_proj.weight.to(torch.cuda.current_device()),
862
- device=layer.mlp.down_proj.weight.device
863
- )
864
- layer.mlp.up_proj = QuantizationLinear(
865
- bit_length=bit_length,
866
- weight=layer.mlp.up_proj.weight.to(torch.cuda.current_device()),
867
- device=layer.mlp.up_proj.weight.device
868
- )
869
-
870
- return self
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch XVERSE model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
32
+ from transformers.modeling_utils import PreTrainedModel
33
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
34
+ from transformers.generation.utils import GenerationConfig
35
+ from .configuration_xverse import XverseConfig
36
+
37
+
38
+ logger = logging.get_logger(__name__)
39
+
40
+ _CONFIG_FOR_DOC = "XverseConfig"
41
+
42
+
43
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
44
+ def _make_causal_mask(
45
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
46
+ ):
47
+ """
48
+ Make causal mask used for bi-directional self-attention.
49
+ """
50
+ bsz, tgt_len = input_ids_shape
51
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
52
+ mask_cond = torch.arange(mask.size(-1), device=device)
53
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
54
+ mask = mask.to(dtype)
55
+
56
+ if past_key_values_length > 0:
57
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
58
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
59
+
60
+
61
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
62
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
63
+ """
64
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
65
+ """
66
+ bsz, src_len = mask.size()
67
+ tgt_len = tgt_len if tgt_len is not None else src_len
68
+
69
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
70
+
71
+ inverted_mask = 1.0 - expanded_mask
72
+
73
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
74
+
75
+
76
+ class XverseRMSNorm(nn.Module):
77
+ def __init__(self, hidden_size, eps=1e-6):
78
+ """
79
+ XverseRMSNorm is equivalent to T5LayerNorm
80
+ """
81
+ super().__init__()
82
+ self.weight = nn.Parameter(torch.ones(hidden_size))
83
+ self.variance_epsilon = eps
84
+
85
+ def forward(self, hidden_states):
86
+ input_dtype = hidden_states.dtype
87
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
88
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
89
+
90
+ return (self.weight * hidden_states).to(input_dtype)
91
+
92
+
93
+ class XverseRotaryEmbedding(torch.nn.Module):
94
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
95
+ super().__init__()
96
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
97
+ self.register_buffer("inv_freq", inv_freq)
98
+
99
+ # Build here to make `torch.jit.trace` work.
100
+ self.max_seq_len_cached = max_position_embeddings
101
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
102
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
103
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
104
+ emb = torch.cat((freqs, freqs), dim=-1)
105
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
106
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
107
+
108
+ def forward(self, x, seq_len=None):
109
+ # x: [bs, num_attention_heads, seq_len, head_size]
110
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
111
+ if seq_len > self.max_seq_len_cached:
112
+ self.max_seq_len_cached = seq_len
113
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
114
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
115
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
116
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
117
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
118
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
119
+ return (
120
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
121
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
122
+ )
123
+
124
+
125
+ def rotate_half(x):
126
+ """Rotates half the hidden dims of the input."""
127
+ x1 = x[..., : x.shape[-1] // 2]
128
+ x2 = x[..., x.shape[-1] // 2 :]
129
+ return torch.cat((-x2, x1), dim=-1)
130
+
131
+
132
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
133
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
134
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
135
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
136
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
137
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
138
+ q_embed = (q * cos) + (rotate_half(q) * sin)
139
+ k_embed = (k * cos) + (rotate_half(k) * sin)
140
+ return q_embed, k_embed
141
+
142
+
143
+ class XverseMLP(nn.Module):
144
+ def __init__(
145
+ self,
146
+ hidden_size: int,
147
+ intermediate_size: int,
148
+ hidden_act: str,
149
+ ):
150
+ super().__init__()
151
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
152
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
153
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
154
+ self.act_fn = ACT2FN[hidden_act]
155
+
156
+ def forward(self, x):
157
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
158
+
159
+
160
+ class XverseAttention(nn.Module):
161
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
162
+
163
+ def __init__(self, config: XverseConfig):
164
+ super().__init__()
165
+ self.config = config
166
+ self.hidden_size = config.hidden_size
167
+ self.num_heads = config.num_attention_heads
168
+ self.head_dim = self.hidden_size // self.num_heads
169
+ self.max_position_embeddings = config.max_position_embeddings
170
+
171
+ if (self.head_dim * self.num_heads) != self.hidden_size:
172
+ raise ValueError(
173
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
174
+ f" and `num_heads`: {self.num_heads})."
175
+ )
176
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
177
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
178
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
179
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
180
+ self.rotary_emb = XverseRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
181
+
182
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
183
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
184
+
185
+ def forward(
186
+ self,
187
+ hidden_states: torch.Tensor,
188
+ attention_mask: Optional[torch.Tensor] = None,
189
+ position_ids: Optional[torch.LongTensor] = None,
190
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
191
+ output_attentions: bool = False,
192
+ use_cache: bool = False,
193
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
194
+ bsz, q_len, _ = hidden_states.size()
195
+
196
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
197
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
198
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
199
+
200
+ kv_seq_len = key_states.shape[-2]
201
+ if past_key_value is not None:
202
+ kv_seq_len += past_key_value[0].shape[-2]
203
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
204
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
205
+ # [bsz, nh, t, hd]
206
+
207
+ if past_key_value is not None:
208
+ # reuse k, v, self_attention
209
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
210
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
211
+
212
+ past_key_value = (key_states, value_states) if use_cache else None
213
+
214
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
215
+
216
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
217
+ raise ValueError(
218
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
219
+ f" {attn_weights.size()}"
220
+ )
221
+
222
+ if attention_mask is not None:
223
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
224
+ raise ValueError(
225
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
226
+ )
227
+ attn_weights = attn_weights + attention_mask
228
+ attn_weights = torch.max(
229
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
230
+ )
231
+
232
+ # upcast attention to fp32
233
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
234
+ attn_output = torch.matmul(attn_weights, value_states)
235
+
236
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
237
+ raise ValueError(
238
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
239
+ f" {attn_output.size()}"
240
+ )
241
+
242
+ attn_output = attn_output.transpose(1, 2)
243
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
244
+
245
+ attn_output = self.o_proj(attn_output)
246
+
247
+ if not output_attentions:
248
+ attn_weights = None
249
+
250
+ return attn_output, attn_weights, past_key_value
251
+
252
+
253
+ class XverseDecoderLayer(nn.Module):
254
+ def __init__(self, config: XverseConfig):
255
+ super().__init__()
256
+ self.hidden_size = config.hidden_size
257
+ self.self_attn = XverseAttention(config=config)
258
+ self.mlp = XverseMLP(
259
+ hidden_size=self.hidden_size,
260
+ intermediate_size=config.intermediate_size,
261
+ hidden_act=config.hidden_act,
262
+ )
263
+ self.input_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
264
+ self.post_attention_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
265
+
266
+ def forward(
267
+ self,
268
+ hidden_states: torch.Tensor,
269
+ attention_mask: Optional[torch.Tensor] = None,
270
+ position_ids: Optional[torch.LongTensor] = None,
271
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
272
+ output_attentions: Optional[bool] = False,
273
+ use_cache: Optional[bool] = False,
274
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
275
+ """
276
+ Args:
277
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
278
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
279
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
280
+ output_attentions (`bool`, *optional*):
281
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
282
+ returned tensors for more detail.
283
+ use_cache (`bool`, *optional*):
284
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
285
+ (see `past_key_values`).
286
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
287
+ """
288
+
289
+ residual = hidden_states
290
+
291
+ hidden_states = self.input_layernorm(hidden_states)
292
+
293
+ # Self Attention
294
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
295
+ hidden_states=hidden_states,
296
+ attention_mask=attention_mask,
297
+ position_ids=position_ids,
298
+ past_key_value=past_key_value,
299
+ output_attentions=output_attentions,
300
+ use_cache=use_cache,
301
+ )
302
+ hidden_states = residual + hidden_states
303
+
304
+ # Fully Connected
305
+ residual = hidden_states
306
+ hidden_states = self.post_attention_layernorm(hidden_states)
307
+ hidden_states = self.mlp(hidden_states)
308
+ hidden_states = residual + hidden_states
309
+
310
+ outputs = (hidden_states,)
311
+
312
+ if output_attentions:
313
+ outputs += (self_attn_weights,)
314
+
315
+ if use_cache:
316
+ outputs += (present_key_value,)
317
+
318
+ return outputs
319
+
320
+
321
+ XVERSE_START_DOCSTRING = r"""
322
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
323
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
324
+ etc.)
325
+
326
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
327
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
328
+ and behavior.
329
+
330
+ Parameters:
331
+ config ([`XverseConfig`]):
332
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
333
+ load the weights associated with the model, only the configuration. Check out the
334
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
335
+ """
336
+
337
+
338
+ @add_start_docstrings(
339
+ "The bare Xverse Model outputting raw hidden-states without any specific head on top.",
340
+ XVERSE_START_DOCSTRING,
341
+ )
342
+ class XversePreTrainedModel(PreTrainedModel):
343
+ config_class = XverseConfig
344
+ base_model_prefix = "model"
345
+ supports_gradient_checkpointing = True
346
+ _no_split_modules = ["XverseDecoderLayer"]
347
+ _skip_keys_device_placement = "past_key_values"
348
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
349
+
350
+ def _init_weights(self, module):
351
+ std = self.config.initializer_range
352
+ if isinstance(module, nn.Linear):
353
+ module.weight.data.normal_(mean=0.0, std=std)
354
+ if module.bias is not None:
355
+ module.bias.data.zero_()
356
+ elif isinstance(module, nn.Embedding):
357
+ module.weight.data.normal_(mean=0.0, std=std)
358
+ if module.padding_idx is not None:
359
+ module.weight.data[module.padding_idx].zero_()
360
+
361
+ def _set_gradient_checkpointing(self, module, value=False):
362
+ if isinstance(module, XverseModel):
363
+ module.gradient_checkpointing = value
364
+
365
+
366
+ XVERSE_INPUTS_DOCSTRING = r"""
367
+ Args:
368
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
369
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
370
+ it.
371
+
372
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
373
+ [`PreTrainedTokenizer.__call__`] for details.
374
+
375
+ [What are input IDs?](../glossary#input-ids)
376
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
377
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
378
+
379
+ - 1 for tokens that are **not masked**,
380
+ - 0 for tokens that are **masked**.
381
+
382
+ [What are attention masks?](../glossary#attention-mask)
383
+
384
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
385
+ [`PreTrainedTokenizer.__call__`] for details.
386
+
387
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
388
+ `past_key_values`).
389
+
390
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
391
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
392
+ information on the default strategy.
393
+
394
+ - 1 indicates the head is **not masked**,
395
+ - 0 indicates the head is **masked**.
396
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
397
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
398
+ config.n_positions - 1]`.
399
+
400
+ [What are position IDs?](../glossary#position-ids)
401
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
402
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
403
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
404
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
405
+
406
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
407
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
408
+
409
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
410
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
411
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
412
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
413
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
414
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
415
+ model's internal embedding lookup matrix.
416
+ use_cache (`bool`, *optional*):
417
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
418
+ `past_key_values`).
419
+ output_attentions (`bool`, *optional*):
420
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
421
+ tensors for more detail.
422
+ output_hidden_states (`bool`, *optional*):
423
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
424
+ more detail.
425
+ return_dict (`bool`, *optional*):
426
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
427
+ """
428
+
429
+ @add_start_docstrings(
430
+ "The bare Xverse Model outputting raw hidden-states without any specific head on top.",
431
+ XVERSE_START_DOCSTRING,
432
+ )
433
+ class XverseModel(XversePreTrainedModel):
434
+ """
435
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`XverseDecoderLayer`]
436
+
437
+ Args:
438
+ config: XverseConfig
439
+ """
440
+
441
+ def __init__(self, config: XverseConfig):
442
+ super().__init__(config)
443
+ self.padding_idx = config.pad_token_id
444
+ self.vocab_size = config.vocab_size
445
+
446
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
447
+ self.layers = nn.ModuleList([XverseDecoderLayer(config) for _ in range(config.num_hidden_layers)])
448
+ self.norm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
449
+
450
+ self.gradient_checkpointing = False
451
+ # Initialize weights and apply final processing
452
+ self.post_init()
453
+
454
+ def get_input_embeddings(self):
455
+ return self.embed_tokens
456
+
457
+ def set_input_embeddings(self, value):
458
+ self.embed_tokens = value
459
+
460
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
461
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
462
+ # create causal mask
463
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
464
+ combined_attention_mask = None
465
+ if input_shape[-1] > 1:
466
+ combined_attention_mask = _make_causal_mask(
467
+ input_shape,
468
+ inputs_embeds.dtype,
469
+ device=inputs_embeds.device,
470
+ past_key_values_length=past_key_values_length,
471
+ )
472
+
473
+ if attention_mask is not None:
474
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
475
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
476
+ inputs_embeds.device
477
+ )
478
+ combined_attention_mask = (
479
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
480
+ )
481
+
482
+ return combined_attention_mask
483
+
484
+ @add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
485
+ def forward(
486
+ self,
487
+ input_ids: torch.LongTensor = None,
488
+ attention_mask: Optional[torch.Tensor] = None,
489
+ position_ids: Optional[torch.LongTensor] = None,
490
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
491
+ inputs_embeds: Optional[torch.FloatTensor] = None,
492
+ use_cache: Optional[bool] = None,
493
+ output_attentions: Optional[bool] = None,
494
+ output_hidden_states: Optional[bool] = None,
495
+ return_dict: Optional[bool] = None,
496
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
497
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
498
+ output_hidden_states = (
499
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
500
+ )
501
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
502
+
503
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
504
+
505
+ # retrieve input_ids and inputs_embeds
506
+ if input_ids is not None and inputs_embeds is not None:
507
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
508
+ elif input_ids is not None:
509
+ batch_size, seq_length = input_ids.shape
510
+ elif inputs_embeds is not None:
511
+ batch_size, seq_length, _ = inputs_embeds.shape
512
+ else:
513
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
514
+
515
+ seq_length_with_past = seq_length
516
+ past_key_values_length = 0
517
+
518
+ if past_key_values is not None:
519
+ past_key_values_length = past_key_values[0][0].shape[2]
520
+ seq_length_with_past = seq_length_with_past + past_key_values_length
521
+
522
+ if position_ids is None:
523
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
524
+ position_ids = torch.arange(
525
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
526
+ )
527
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
528
+ else:
529
+ position_ids = position_ids.view(-1, seq_length).long()
530
+
531
+ if inputs_embeds is None:
532
+ inputs_embeds = self.embed_tokens(input_ids)
533
+ # embed positions
534
+ if attention_mask is None:
535
+ attention_mask = torch.ones(
536
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
537
+ )
538
+ attention_mask = self._prepare_decoder_attention_mask(
539
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
540
+ )
541
+
542
+ hidden_states = inputs_embeds
543
+
544
+ if self.gradient_checkpointing and self.training:
545
+ if use_cache:
546
+ logger.warning_once(
547
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
548
+ )
549
+ use_cache = False
550
+
551
+ # decoder layers
552
+ all_hidden_states = () if output_hidden_states else None
553
+ all_self_attns = () if output_attentions else None
554
+ next_decoder_cache = () if use_cache else None
555
+
556
+ for idx, decoder_layer in enumerate(self.layers):
557
+ if output_hidden_states:
558
+ all_hidden_states += (hidden_states,)
559
+
560
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
561
+
562
+ if self.gradient_checkpointing and self.training:
563
+
564
+ def create_custom_forward(module):
565
+ def custom_forward(*inputs):
566
+ # None for past_key_value
567
+ return module(*inputs, output_attentions, None)
568
+
569
+ return custom_forward
570
+
571
+ layer_outputs = torch.utils.checkpoint.checkpoint(
572
+ create_custom_forward(decoder_layer),
573
+ hidden_states,
574
+ attention_mask,
575
+ position_ids,
576
+ None,
577
+ )
578
+ else:
579
+ layer_outputs = decoder_layer(
580
+ hidden_states,
581
+ attention_mask=attention_mask,
582
+ position_ids=position_ids,
583
+ past_key_value=past_key_value,
584
+ output_attentions=output_attentions,
585
+ use_cache=use_cache,
586
+ )
587
+
588
+ hidden_states = layer_outputs[0]
589
+
590
+ if use_cache:
591
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
592
+
593
+ if output_attentions:
594
+ all_self_attns += (layer_outputs[1],)
595
+
596
+ hidden_states = self.norm(hidden_states)
597
+
598
+ # add hidden states from the last decoder layer
599
+ if output_hidden_states:
600
+ all_hidden_states += (hidden_states,)
601
+
602
+ next_cache = next_decoder_cache if use_cache else None
603
+ if not return_dict:
604
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
605
+ return BaseModelOutputWithPast(
606
+ last_hidden_state=hidden_states,
607
+ past_key_values=next_cache,
608
+ hidden_states=all_hidden_states,
609
+ attentions=all_self_attns,
610
+ )
611
+
612
+
613
+ class XverseForCausalLM(XversePreTrainedModel):
614
+ _tied_weights_keys = ["lm_head.weight"]
615
+
616
+ def __init__(self, config):
617
+ super().__init__(config)
618
+ self.model = XverseModel(config)
619
+
620
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
621
+
622
+ # Initialize weights and apply final processing
623
+ self.post_init()
624
+
625
+ def get_input_embeddings(self):
626
+ return self.model.embed_tokens
627
+
628
+ def set_input_embeddings(self, value):
629
+ self.model.embed_tokens = value
630
+
631
+ def get_output_embeddings(self):
632
+ return self.lm_head
633
+
634
+ def set_output_embeddings(self, new_embeddings):
635
+ self.lm_head = new_embeddings
636
+
637
+ def set_decoder(self, decoder):
638
+ self.model = decoder
639
+
640
+ def get_decoder(self):
641
+ return self.model
642
+
643
+ @add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
644
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
645
+ def forward(
646
+ self,
647
+ input_ids: torch.LongTensor = None,
648
+ attention_mask: Optional[torch.Tensor] = None,
649
+ position_ids: Optional[torch.LongTensor] = None,
650
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
651
+ inputs_embeds: Optional[torch.FloatTensor] = None,
652
+ labels: Optional[torch.LongTensor] = None,
653
+ use_cache: Optional[bool] = None,
654
+ output_attentions: Optional[bool] = None,
655
+ output_hidden_states: Optional[bool] = None,
656
+ return_dict: Optional[bool] = None,
657
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
658
+ r"""
659
+ Args:
660
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
661
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
662
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
663
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
664
+
665
+ Returns:
666
+
667
+ Example:
668
+
669
+ ```python
670
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
671
+
672
+ >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS, trust_remote_code=True)
673
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
674
+
675
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
676
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
677
+
678
+ >>> # Generate
679
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
680
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
681
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
682
+ ```"""
683
+
684
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
685
+ output_hidden_states = (
686
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
687
+ )
688
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
689
+
690
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
691
+ outputs = self.model(
692
+ input_ids=input_ids,
693
+ attention_mask=attention_mask,
694
+ position_ids=position_ids,
695
+ past_key_values=past_key_values,
696
+ inputs_embeds=inputs_embeds,
697
+ use_cache=use_cache,
698
+ output_attentions=output_attentions,
699
+ output_hidden_states=output_hidden_states,
700
+ return_dict=return_dict,
701
+ )
702
+
703
+ hidden_states = outputs[0]
704
+ logits = self.lm_head(hidden_states)
705
+
706
+ loss = None
707
+ if labels is not None:
708
+ # Shift so that tokens < n predict n
709
+ shift_logits = logits[..., :-1, :].contiguous()
710
+ shift_labels = labels[..., 1:].contiguous()
711
+ # Flatten the tokens
712
+ loss_fct = CrossEntropyLoss()
713
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
714
+ shift_labels = shift_labels.view(-1)
715
+ # Enable model parallelism
716
+ shift_labels = shift_labels.to(shift_logits.device)
717
+ loss = loss_fct(shift_logits, shift_labels)
718
+
719
+ if not return_dict:
720
+ output = (logits,) + outputs[1:]
721
+ return (loss,) + output if loss is not None else output
722
+
723
+ return CausalLMOutputWithPast(
724
+ loss=loss,
725
+ logits=logits,
726
+ past_key_values=outputs.past_key_values,
727
+ hidden_states=outputs.hidden_states,
728
+ attentions=outputs.attentions,
729
+ )
730
+
731
+ def _build_chat_input(self, tokenizer, messages: List[dict], max_new_tokens: int=2048):
732
+ max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
733
+ max_input_tokens = self.config.max_position_embeddings - max_new_tokens
734
+ max_input_tokens = max(self.config.max_position_embeddings // 2, max_input_tokens)
735
+
736
+ total_input, round_input = [], []
737
+ user_prompt, assist_prompt = "Human: ", "Assistant: "
738
+ for i, message in enumerate(messages[::-1]):
739
+ if message['role'] == 'user':
740
+ user_content = f"{user_prompt}{message['content']}\n\n"
741
+ if i == 0:
742
+ user_content += assist_prompt
743
+ content_tokens = tokenizer.encode(user_content, return_token_type_ids=False)
744
+ round_input = content_tokens + round_input
745
+
746
+ if i != 0:
747
+ if len(total_input) + len(round_input) > max_input_tokens:
748
+ break
749
+ else:
750
+ total_input = round_input + total_input
751
+ else:
752
+ total_input = round_input + total_input
753
+ if len(total_input) >= max_input_tokens:
754
+ break
755
+ round_input = []
756
+ elif message['role'] == 'assistant':
757
+ assist_content = f"{assist_prompt}{message['content']}"
758
+ content_tokens = tokenizer.encode(assist_content, return_token_type_ids=False)
759
+ round_input = content_tokens + [self.generation_config.eos_token_id] + round_input
760
+ else:
761
+ raise ValueError(f"message role not supported yet: {message['role']}")
762
+ total_input = total_input[-max_input_tokens:] # truncate left
763
+ total_input = torch.LongTensor([total_input]).to(self.device)
764
+ return total_input
765
+
766
+ @torch.no_grad()
767
+ def chat(self, tokenizer, messages: List[dict], stream=False,
768
+ generation_config: Optional[GenerationConfig]=None):
769
+ generation_config = generation_config or self.generation_config
770
+ input_ids = self._build_chat_input(tokenizer, messages, generation_config.max_new_tokens)
771
+ if stream:
772
+ from transformers import TextIteratorStreamer
773
+ from threading import Thread
774
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
775
+ self.__class__.generate = PreTrainedModel.generate
776
+
777
+ def stream_generator():
778
+ generation_kwargs = dict(inputs=input_ids, generation_config=generation_config, streamer=streamer)
779
+ thread = Thread(target=self.generate, kwargs=generation_kwargs)
780
+ thread.start()
781
+ for next_text in streamer:
782
+ yield next_text.rstrip(tokenizer.eos_token)
783
+
784
+ return stream_generator()
785
+ else:
786
+ self.__class__.generate = PreTrainedModel.generate # disable stream
787
+ outputs = self.generate(input_ids, generation_config=generation_config)
788
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
789
+ return response
790
+
791
+ def prepare_inputs_for_generation(
792
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
793
+ ):
794
+ if past_key_values:
795
+ input_ids = input_ids[:, -1:]
796
+
797
+ position_ids = kwargs.get("position_ids", None)
798
+ if attention_mask is not None and position_ids is None:
799
+ # create position_ids on the fly for batch generation
800
+ position_ids = attention_mask.long().cumsum(-1) - 1
801
+ position_ids.masked_fill_(attention_mask == 0, 1)
802
+ if past_key_values:
803
+ position_ids = position_ids[:, -1].unsqueeze(-1)
804
+
805
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
806
+ if inputs_embeds is not None and past_key_values is None:
807
+ model_inputs = {"inputs_embeds": inputs_embeds}
808
+ else:
809
+ model_inputs = {"input_ids": input_ids}
810
+
811
+ model_inputs.update(
812
+ {
813
+ "position_ids": position_ids,
814
+ "past_key_values": past_key_values,
815
+ "use_cache": kwargs.get("use_cache"),
816
+ "attention_mask": attention_mask,
817
+ }
818
+ )
819
+ return model_inputs
820
+
821
+ @staticmethod
822
+ def _reorder_cache(past_key_values, beam_idx):
823
+ reordered_past = ()
824
+ for layer_past in past_key_values:
825
+ reordered_past += (
826
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
827
+ )
828
+ return reordered_past
829
+
830
+ def quantize(self, bit_length: int):
831
+ from .quantization import QuantizationLinear
832
+
833
+ for layer in self.model.layers:
834
+ layer.self_attn.q_proj = QuantizationLinear(
835
+ bit_length=bit_length,
836
+ weight=layer.self_attn.q_proj.weight.to(torch.cuda.current_device()),
837
+ device=layer.self_attn.q_proj.weight.device,
838
+ )
839
+ layer.self_attn.k_proj = QuantizationLinear(
840
+ bit_length=bit_length,
841
+ weight=layer.self_attn.k_proj.weight.to(torch.cuda.current_device()),
842
+ device=layer.self_attn.k_proj.weight.device
843
+ )
844
+ layer.self_attn.v_proj = QuantizationLinear(
845
+ bit_length=bit_length,
846
+ weight=layer.self_attn.v_proj.weight.to(torch.cuda.current_device()),
847
+ device=layer.self_attn.v_proj.weight.device
848
+ )
849
+ layer.self_attn.o_proj = QuantizationLinear(
850
+ bit_length=bit_length,
851
+ weight=layer.self_attn.o_proj.weight.to(torch.cuda.current_device()),
852
+ device=layer.self_attn.o_proj.weight.device
853
+ )
854
+ layer.mlp.gate_proj = QuantizationLinear(
855
+ bit_length=bit_length,
856
+ weight=layer.mlp.gate_proj.weight.to(torch.cuda.current_device()),
857
+ device=layer.mlp.gate_proj.weight.device
858
+ )
859
+ layer.mlp.down_proj = QuantizationLinear(
860
+ bit_length=bit_length,
861
+ weight=layer.mlp.down_proj.weight.to(torch.cuda.current_device()),
862
+ device=layer.mlp.down_proj.weight.device
863
+ )
864
+ layer.mlp.up_proj = QuantizationLinear(
865
+ bit_length=bit_length,
866
+ weight=layer.mlp.up_proj.weight.to(torch.cuda.current_device()),
867
+ device=layer.mlp.up_proj.weight.device
868
+ )
869
+
870
+ return self
tokenizer.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
- size 499723